Study on submanfolds of homogeneous spaces from the view of orbital Grassmann geometry
从轨道格拉斯曼几何角度研究齐次空间的子流形
基本信息
- 批准号:17540081
- 负责人:
- 金额:$ 1.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study is on the Grassmann geometry on the Riemannian homogeneous spaces. Our aim is to consider the classification problem of extrinsic homogeneous submanifolds of Riemannian symmetric spaces. For this, in this study, we examine the case where a Riemannian homogeneous space is a 3-dimensional unimodular Lie group with a left invariant metric. The 3-dimensional unimodular Lie groups are classified into six ones; the 3-dimensional vector group, the 3-dimensional Heisenberg group, the groups of rigid motions of the Eucliden 2-plane and the Minkowski 2-plane, the special unitary group SU (2), and the special linear group SL (2,R). Also, for each of them the geometric properties such as the curvatures, the isometry group, and m on, can be expressed concretely. In this study we in particular consider the Grassmann geometry on the spaces SU (2) and SL (2,R), while the cases of the Heisenberg group and the groups of rigid motions of the Eucliden 2-plane and the Minkowski 2-plane are clarify by H Naitoh, J. Inoguchi, and K Kuwabara. The obtained main results are the following.;for both the spaces SU (2) and SL (2,R),(1) the classification for all the orbits associated with Grassmann geometries on their spaces(2) the determination of the orbits whose Grassmann geometries are nonempty(3) the analysis on the surface theory for nonempty Grassmann geometries, in particular, (3-1) the settlement of the existence problem of totally geodesic surfaces, (3-2) the settlement of the existence problem of flat surfaces, (3-3) the settlement of the existence problem of minimal surface, (3-4) the settlement of the existence problem of constant mean curvature surfaces(4) the overview of Grassmann geometry on all the 3-dimensional unimodular Lie groups with left invariant metrics.These results will be appeared in forthcoming papers titled by "Grassmann geometry on the 3-dimensional unimodular Lie groups I, II".
本文研究黎曼齐性空间上的格拉斯曼几何。我们的目的是考虑黎曼对称空间的外齐子流形的分类问题。为此,在这项研究中,我们研究的情况下,一个黎曼齐性空间是一个三维么模李群与左不变度量。三维幺模李群分为六类:三维向量群、三维Heisenberg群、欧氏2-平面和Minkowski 2-平面的刚性运动群、特殊幺群SU(2)和特殊线性群SL(2,R)。此外,对于它们中的每一个的几何性质,如曲率,等距群,和m上,可以具体表示。在这项研究中,我们特别考虑空间SU(2)和SL(2,R)上的格拉斯曼几何,而海森堡群和欧几里德2-平面和闵可夫斯基2-平面的刚性运动群的情况是由H Naitoh,J. Inoguchi和K Kuwabara澄清。得到的主要结果如下。对SU(2)和SL(2,R)空间,(1)空间上与Grassmann几何有关的所有轨道的分类;(2)Grassmann几何非空的轨道的确定;(3)非空Grassmann几何的曲面理论分析,特别是(3-1)全测地曲面存在性问题的解决,(3-2)平面存在性问题的解决,(3-3)极小曲面存在性问题的解决,(3-4)常平均曲率曲面存在性问题的解决(4)Grassmann几何在所有3-这些结果将出现在即将发表的论文标题为“格拉斯曼几何上的三维幺模李群I,II”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The divisibility in the cut-and-paste group of G-manifolds and fibring over the circle within a cobordism class
共边类中 G 流形和圆上的纤维的剪切和粘贴组的可分性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Katsuhiro Komiya
- 通讯作者:Katsuhiro Komiya
Classification of symmetric submanifolds of symmetric spaces
对称空间的对称子流形的分类
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Jun-ichi Inoguchi;Kenji Kuwabara;Hiroo Naitoh;Katsuhiro Komiya;Hiroo Naitoh
- 通讯作者:Hiroo Naitoh
Nonexistence of homotopy equivalences which are C^{\infty} stable or of finite codimension
不存在 C^{infty} 稳定或有限余维的同伦等价
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kojun Abe;Kazuhiko Fukui;阿部 孝順;Hiroyuki Minakawa;阿部 孝順;Hiroyuki Minakawa;Kojun Abe;阿部孝順;Yoshifumi Ando;Yoshifumi Ando;Yoshifumi Ando;Yoshifumi Ando;Yoshifumi Ando;Yoshifumi Ando
- 通讯作者:Yoshifumi Ando
Grassmann geometry on the 3-dimensional unimodular Lie Groups
3 维幺模李群上的格拉斯曼几何
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Hiroo;Naitoh
- 通讯作者:Naitoh
Bounds for double zeta functions
双 zeta 函数的界限
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:I. Kiuchi;Y. Tanigawa
- 通讯作者:Y. Tanigawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAITOH Hiroo其他文献
NAITOH Hiroo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAITOH Hiroo', 18)}}的其他基金
Grassmann geomety of surfaces in a Riemannian symmetric space
黎曼对称空间中曲面的格拉斯曼几何
- 批准号:
23540091 - 财政年份:2011
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the geometry of symmetric spaces and their totally geodesic submanifolds
对称空间及其全测地子流形的几何研究
- 批准号:
13640077 - 财政年份:2001
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Submanifold Theory of Compact Riemannian Symmetric Spaces
紧黎曼对称空间子流形理论研究
- 批准号:
09440035 - 财政年份:1997
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
- 批准号:
23K03037 - 财政年份:2023
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Homogeneous Space Properties of Moduli Spaces: With Applications to Theta Functions and Finite Fields
数学科学:模空间的齐次空间性质:在 Theta 函数和有限域中的应用
- 批准号:
9622928 - 财政年份:1996
- 资助金额:
$ 1.96万 - 项目类别:
Continuing Grant
Physical Procession in the system with cosmological constant and dynamics of in homogeneous space-times
宇宙常数系统中的物理过程和均匀时空动力学
- 批准号:
04640312 - 财政年份:1992
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Homogeneous Space の研究
均质空间研究
- 批准号:
X45095-----84505 - 财政年份:1970
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (D)