Studies on Paramaeter Indentification of Factor mode for Bonds

债券因子模式参数辨识研究

基本信息

  • 批准号:
    17560402
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

During the first two years, the new factor model for bond process has been proposed. After checking the various types of the arbitragy free or empirical models, we met with the conclusion that the stochastic Parabolic partial differential equation is the most adequate model. To apply the proposed model to the practical situation, we established the on-line parameter estimation algorithm from the obtained yield curve data. The idea to construct the on-line estimator is to use the particle filter algorithm. Despite the success of particle filter, there are two factors which cause difficulties in its implementation. The first one is the choice of importance functions commonly used in the literature which are far from being optimal. The second one is the combined state and parameter estimation problem. In the final year, we are able to circumvent both these problems. There was an additional difficulty of proper discretization because of the inherently continuous nature of financial model. Numerical results which are presented in the published papers listed below show the effectiveness of the proposed algorithms.
在前两年,提出了新的键合过程因子模型。在对各种无套利模型或经验模型进行检验后,我们得出结论:随机抛物型偏微分方程是最合适的模型。为了将所提出的模型应用于实际情况,我们根据获得的收益率曲线数据建立了在线参数估计算法。构造在线估计器的思想是使用粒子滤波算法。尽管粒子滤波取得了成功,但存在两个因素导致其实施困难。首先是文献中常用的重要函数的选择,这些重要函数的选择远非最优。第二个问题是组合状态和参数估计问题。在最后一年,我们能够规避这两个问题。由于财务模型固有的连续性质,适当的离散化还有一个额外的困难。本文所发表的论文的数值结果表明了所提出算法的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recursive Parameter Identification for Infinite-dimensional Factor Model by using Particle Filter-Application to US-Treasury Bonds-
使用粒子滤波器的无限维因子模型的递归参数识别-在美国国债中的应用-
Filtering and identification of stochastic volatility for Parabolic type factor modles
抛物型因子模型随机波动性的过滤与识别
Filtering and Identification of Stochastic Volatility for Parabolic Type Factor Models
抛物型因子模型随机波动率的过滤和识别
Filtering and Identification of Interest Rate Model with Stochastic Volatility
随机波动利率模型的过滤与辨识
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maina;J.W.;Higashi;S.;Kikuta;Y.;Matsui;K.;相原 伸一;相原 伸一;相原 伸一;相原 伸一
  • 通讯作者:
    相原 伸一
Filtering and Identification of Parabolic Type Factor Model with Stochastic Volatlity
随机波动抛物型因子模型的滤波与辨识
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIHARA Shinichi其他文献

AIHARA Shinichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIHARA Shinichi', 18)}}的其他基金

Development of the algorithm for stochastic modeling and option pricing of risky bond
风险债券随机建模和期权定价算法的开发
  • 批准号:
    14550456
  • 财政年份:
    2002
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了