燃料電池多孔質電極内における凝縮を伴う水分の高時間分解能3次元計測と能動制御
燃料电池多孔电极中凝结水的高时间分辨率三维测量和主动控制
基本信息
- 批准号:17760157
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
高出力密度,低温作動等の特徴を有する固体高分子形燃料電池(PEFC)は,次世代の自動車用動力源や家庭用分散電源として開発が期待されている.しかしながら,高性能化に向けて解決すべき課題は多く,その中に,カソード側での水分管理がある.特に,カソード側においては,生成水がガス拡散層(Gas Diffusion Layer, GDL)内で凝縮し,酸素の供給を阻害するというフラッディング現象が著しくなり,その結果,PEFCセルの出力低下を引き起こす.そこで本研究では,高精細デジタル光学顕微鏡を用いることにより,発電モードでのPEFCセルカソード側ガス拡散層内部における水分の存在状態およびミクロ挙動の直接可視化計測を行った.その結果,拡散層内部での水分の凝縮は,ガス流路の下流側で生じやすく,凝縮水の水分量も下流側の方が多くなることが明らかになった.さらに,カソード側におけるフラッディング現象を回避するため,水分排出機能を有する新規電極構造を提案し,その効果について実験的に検証した.本研究課題では,水分誘導経路としてのスリット構造を有するガス拡散層を製作し,スリット付拡散層を採用したPEFCセルのカソード内水分計測および性能評価試験を行った.その結果,水分凝縮の著しいカソード流路の下流側にスリットを設けることにより,拡散層内部で凝縮した水分が迅速にスリット側へ排水されることが可視化観察により示された.また,PEFCセル起動運転時において,スリットを有さない拡散層を用いた場合は,負荷を加えた後,セル電圧は著しく低下するが,スリットを有する拡散層を用いた場合は,セル電圧はほとんど低下せず,安定して発電が継続されることが明らかとなった.これは,拡散層内部の凝縮水の排出が迅速化され,フラッディング現象が抑制されていることによると考えられる.
Features such as high output density, low temperature operation and so on are advanced solid polymer fuel cell (PEFC), next-generation automatic power source, household distributed power source, and so on. In order to solve the problem of water management, we should pay more attention to the problem of water management. In this way, you need to generate the condensate in Gas Diffusion Layer (GDL), and the acid is supplied to prevent the damage. The results show that the low output of PEFC leads to the increase of temperature. In the course of this study, high-precision optical microdevices are used in optical microscopes. In this study, high-precision optical microdevices are used in optical microscopes. In this study, high-precision optical microscopes are used in optical microscopes, PEFC devices are used in optical microscopes, and the data are dispersed in the system. According to the results of the experiment, the internal water content condensed, the flow path decreased, the water content of the condensate water decreased, and the water content of the condensate increased. As a result, the water discharge mechanism can be used to create a proposal for the production of new regulations, and the result is that the water discharge mechanism can be used to avoid the impact of environmental pollution. The purpose of this study is to determine the performance of the water guide system, which is based on the measurement of water content in the system. In this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this study, the results of this study are as follows: in this The results show that the water condensate affects the flow path, the flow path, the setting, the temperature, the temperature, and the temperature. When the PEFCvalve starts, it turns off when it starts. After the switch is added, the power supply is switched on. After the load is added, the power supply is switched on. After the switch is added, the switch is switched on. The switch is switched on. The switch is closed. The internal condensed water is discharged quickly and quickly, and it is like the inhibition of the condensate.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microscopic Visualization of State and Behavior of Liquid Water in a Gas Diffusion Layer of PEFC
- DOI:10.5796/electrochemistry.75.149
- 发表时间:2007-02
- 期刊:
- 影响因子:2.5
- 作者:Kosuke Nishida;T. Murakami;S. Tsushima;S. Hirai
- 通讯作者:Kosuke Nishida;T. Murakami;S. Tsushima;S. Hirai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
西田 耕介其他文献
西田 耕介的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('西田 耕介', 18)}}的其他基金
Optimum design of reactive transport fields in fuel cells based on combined measurements using laser and X-ray and entropy mapping
基于激光、X 射线和熵映射组合测量的燃料电池中反应输运场的优化设计
- 批准号:
23K03692 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)