Research of enstrophy decay lawin two-dimensional turbulence at finite Reynolds number
有限雷诺数二维湍流熵衰变规律研究
基本信息
- 批准号:18540433
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studies on decaying law of enstrophy in two-dimensional turbulence, theoretically and numerically. The main results are summarized as follows:1. Two self-similar theories, Chasnov and Herring theory (1998) and Iwayama and Shepherd theory (2006), which derive the enstrophy decay law found from numerical simulations by Chasnov (1997) and Das, et. al. (2001), are compared. The latter has the advantage beyond the former in the sense that the latter can easily extend to systems with various form of viscosity and other two-dimensional fluid system. Indeed, a self-similar theory for a generalized two-dimensional turbulence is proposed using Iwayama and Shepherd theory.2. Numerical simulations are performed to examine the validity of self-similar hypothesis relying on Chasnov and Herring (1998) and Iwayama and Shepherd (3306). As the results, in general, it is shown no existence of the self-similarity, rather the self-similarity exists only at a certain initial Reynolds number and for a certain form of viscosity. Moreover the enstiophy decay law, which is found by both Chasnov (1997) and Das, et. al. (2001) and is considered as one in the high Reynolds number limit, should be considered as one at medium Reynolds number.We try to produce new paradigms for two-dimensional fluid system1. Non localness of interaction in wave number space for a generalized two-dimensional turbulence2. Stability of flows in a generalized two-dimensional fluid system3. Nonlinear Ekm an pumping induced by circular vortex
本文从理论和数值两方面研究了二维湍流中涡度拟能的衰减规律。主要研究结果如下:1. Chasnov和Herring(1998)和Iwayama和Shepherd(2006)两个自相似理论推导了Chasnov(1997)和Das等人在数值模拟中发现的涡度拟能衰减规律。(2001)比较。后者比前者具有更大的优势,因为后者可以很容易地扩展到具有各种粘性形式的系统和其他二维流体系统。实际上,利用Iwayama和Shepherd理论提出了一个广义二维湍流的自相似理论.通过数值模拟验证了Chasnov和Herring(1998)以及Iwayama和Shepherd(3306)提出的自相似假设的有效性。结果表明,一般情况下,自相似性不存在,而自相似性只在一定的初始雷诺数和一定的粘性形式下存在。此外,Chasnov(1997)和Das,et.(2001),并被认为是一个在高雷诺数限制,应被认为是一个在中等雷诺数。波数空间中广义二维相干相互作用的非定域性2。广义二维流体系统中流动的稳定性3。圆涡诱导的非线性Ekm_a泵送
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interacting scales and triad enstrophy transfers in generalized two-dimensional turbulence.
广义二维湍流中相互作用的尺度和三元熵传递。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Murakami;S.;Iwayama;T;Murakami S. and Iwayama T.;Sueyoshi M. and Iwayama T.;Watanabe T. and Iwayama T.
- 通讯作者:Watanabe T. and Iwayama T.
β面上の強制2次元乱流における帯状流の東西非対称性のパラメータ依存性
β平面强迫二维湍流中纬向流东西向不对称性的参数依赖性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:村上真也;岩山隆寛
- 通讯作者:岩山隆寛
Hamiltonian structure for the Charney-Hasegawa-Mima equation in the asymptotic model regime
渐进模型体系中 Charney-Hasekawa-Mima 方程的哈密顿结构
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Murakami;S.;Iwayama;T;Murakami S. and Iwayama T.;Sueyoshi M. and Iwayama T.
- 通讯作者:Sueyoshi M. and Iwayama T.
Hamiltonian structure for the Charnerliasegawa-Mima equation in the asymptotic model regime
渐进模型体系中 Charnerliasekawa-Mima 方程的哈密顿结构
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Sueyoshi;M.;Iwayama;T
- 通讯作者:T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IWAYAMA Takahiro其他文献
IWAYAMA Takahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IWAYAMA Takahiro', 18)}}的其他基金
Study of vortex motions for a generalized two-dimensional fluid system using point-vortex model
使用点涡模型研究广义二维流体系统的涡运动
- 批准号:
24540472 - 财政年份:2012
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for flows in a generalized two-dimensional fluid
广义二维流体中流动的稳定性
- 批准号:
20540424 - 财政年份:2008
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)