Lossy to Lossless Image Coding Using Allpass Filters

使用全通滤波器从有损到无损图像编码

基本信息

  • 批准号:
    18500076
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Wavelet-based image coding has been extensively studied and adopted in the international standard JPEG2000. In the wavelet-based image coding, two-band PR (perfect reconstruction) filter banks play a very important role. The analysis and synthesis filters are required to have exactly linear phase responses (corresponding to symmetric wavelet bases), allowing us to use the symmetric extension method to accurately handle the boundaries of images. The wavelet filter banks should also be orthonormal to avoid redundancy between the subband images. Unfortunately, there are no nontrivial orthonormal symmetric wavelets with FIR filters, except for the Haar wavelet. To achieve better compression performance, a reasonable regularity is necessary for wavelet bases. Therefore, at least one of the above-mentioned conditions has to be given up to get more regularity than the Haar wavelet. For example, the D-9/7 and D-5/3 wavelets supported by the baseline codec of JPEG2000 are biorthogonal. On the other hand, it is known that IIR, wavelet filters can simultaneously satisfy both of the orthonormality and symmetry. A class of IIR orthonormal symmetric wavelets has been proposed by using allpass filters.We apply the allpass-based orthonormal symmetric wavelets to image compression, and propose an effective implementation of the wavelet filter banks. Firstly, we present the implementation of irreversible real-to-real wavelets and show its decomposition process by using allpass filters. Then, we make use of the invertible implementation of allpass filters to realize the reversible integer-to-integer wavelets. Finally, we investigate the coding performance of the allpass-based orthonormal symmetric wavelets by using the reference software of JPEG2000, and compare the performance with the D-9/7 and D-5/3 wavelets. It is shown from the experimental results that the allpass-based orthonormal symmetric wavelets can achieve better compression performance than the D-9/7 and D-5/3 wavelets.
基于小波的图像编码已被广泛研究并被国际标准JPEG2000采用。在基于小波的图像编码中,双带PR(完美重构)滤波器组发挥着非常重要的作用。分析和合成滤波器需要具有精确的线性相位响应(对应于对称小波基),使我们能够使用对称扩展方法来准确处理图像的边界。小波滤波器组还应该是正交的,以避免子带图像之间的冗余。不幸的是,除了 Haar 小波之外,不存在具有 FIR 滤波器的非平凡正交对称小波。为了获得更好的压缩性能,小波基需要合理的正则性。因此,至少必须放弃上述条件之一才能获得比 Haar 小波更好的规律性。例如,JPEG2000的基线编解码器支持的D-9/7和D-5/3小波是双正交的。另一方面,众所周知,IIR小波滤波器可以同时满足正交性和对称性。利用全通滤波器提出了一类IIR正交对称小波。我们将基于全通的正交对称小波应用于图像压缩,并提出了小波滤波器组的有效实现。首先,我们介绍了不可逆实数小波的实现,并使用全通滤波器展示了其分解过程。然后,我们利用全通滤波器的可逆实现来实现可逆的整数到整数小波。最后,利用JPEG2000参考软件研究了基于全通的正交对称小波的编码性能,并与D-9/7和D-5/3小波进行了性能比较。实验结果表明,基于全通的正交对称小波能够比D-9/7和D-5/3小波获得更好的压缩性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of Flat Delay IIR Filters with Flat Passband and Equiripple Stopband Magnitude Responses
具有平坦通带和等波纹阻带幅度响应的平坦延迟 IIR 滤波器的设计
Computational Complexity Reduction for Allpass-based Image Coding
基于全通的图像编码的计算复杂度降低
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.;Ohno;X.;Zhang
  • 通讯作者:
    Zhang
通過域平たん阻止域等リプル振幅特性をもつ平たん群遅延IIRフィルタの-設計法
具有通带平坦阻带等波纹幅度特性的平坦群时延IIR滤波器的设计方法
Hilbert Transform Pairs of Orthonormal Symmetric Wavelet Bases Using Allpass Filters
使用全通滤波器对正交对称小波基进行希尔伯特变换
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Zhang;D. F. Ge
  • 通讯作者:
    D. F. Ge
Closed-Form Design of Maxflat R-Regular IIR Mth-Band Filters
Maxflat R-Regular IIR Mth-Band 滤波器的闭式设计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Takamizawa;他;X. Zhang
  • 通讯作者:
    X. Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ZHANG Xi其他文献

左旋精氨酸恢复eNOS和iNOS平衡并抑制肺动脉高压的研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    常凤军;WEI Wei;OU Zhi-jun;HU Xiao-xia;YANG Xiao-xia;WANG Zhi-ping;ZHANG Xi;OU Jing-song;魏玮;欧志君;胡晓侠;杨晓霞;王治平;张希;区景松;CHANG Feng-jun
  • 通讯作者:
    CHANG Feng-jun
Phytoremediation potential of Pteris vittata L. under the combined contamination of As and Pb: beneficial interaction between As and Pb. Environmental Science and Pollution Research
As和Pb复合污染下Pteris vittata L.的植物修复潜力:As和Pb之间的有益相互作用。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    WAN Xiao-Ming;LEI Mei;CHEN Tong-Bin;ZHOU Guang-Dong;Yang Jun;Wang YW;ZHOU Xiao-Yong;ZHANG Xi;XU Rui-Xiang
  • 通讯作者:
    XU Rui-Xiang
Oasis System and Its reasonabl
绿洲系统及其合理性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LEI Jun*;LUO Geping;ZHANG Xi
  • 通讯作者:
    ZHANG Xi
Impact of emulsifi cation of crude oil on normalized radar cross section
  • DOI:
    https://doi.org/10.1007/s00343-019-8298-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    GUO Jie;ZHANG Tianlong;ZHANG Xi;LIU Genwang
  • 通讯作者:
    LIU Genwang

ZHANG Xi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ZHANG Xi', 18)}}的其他基金

Flicker Reduction and Visual Quality Improvement for High Definition Compressed Videos
减少闪烁并提高高清压缩视频的视觉质量
  • 批准号:
    26330128
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wavelet Video Coding Using Allpass Filters
使用全通滤波器的小波视频编码
  • 批准号:
    22500083
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Theory of Wavelets on Bounded Domains with Applications to Seismic Imaging
有界域上的小波理论及其在地震成像中的应用
  • 批准号:
    534939-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Wavelets in time series
时间序列中的小波
  • 批准号:
    2474547
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Vibrational Analysis: Tradeoffs between Wavelets and Convolutional Neural Networks
振动分析:小波和卷积神经网络之间的权衡
  • 批准号:
    553391-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Theory of Wavelets on Bounded Domains with Applications to Seismic Imaging
有界域上的小波理论及其在地震成像中的应用
  • 批准号:
    534939-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Identifying Optimal Mother Wavelets for the Implementation of the Wavelet Transform in Peatland Applications
确定在泥炭地应用中实施小波变换的最佳母小波
  • 批准号:
    528700-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Identification and Testing Structural Changes at Unknown Locations with Wavelets
用小波识别和测试未知位置的结构变化
  • 批准号:
    RGPIN-2014-04170
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Fourier Analysis, Wavelets and Atomic Decomposition
傅里叶分析、小波和原子分解
  • 批准号:
    512413-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification and Testing Structural Changes at Unknown Locations with Wavelets
用小波识别和测试未知位置的结构变化
  • 批准号:
    RGPIN-2014-04170
  • 财政年份:
    2017
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new wavelets from unitary circuit representations
从酉电路表示中开发新的小波
  • 批准号:
    505898-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了