Aresearch of statistical properties of singular models such as a multi-layer perceptron

多层感知器等奇异模型统计特性的研究

基本信息

  • 批准号:
    18500171
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

The multi-layer perceptron is known to be a singular model in which the Fisher information matrix can be singular in some cases. The singularity comes from parametric basis functions by which the shapes of basis functions vary. To reveal statistical properties of a singular model, in this research, we focus on the variable basis functions. We derived a upper bound of the degree of over-fitting under a restriction on basis function outputs. For example, the restriction can be achieved by restricting an input weight space in a multi-layer perceptron. By applying this result, we showed that, for a regression using one Gaussian unit, a very small value is frequently obtained for a width parameter in training. On the other hand, we derived the expectations of the training error and generalization error of learning machine in which basis functions which are chosen from a finite set of orthogonal functions. This clarifies that AIC type model selection criteria for machines with variable basis functions need an information of a target function. We solve this problem by applying a shrinkage method. From a viewpoint of variable basis functions, furthermore, we proposed a shrinkage method for a nonparametric regression. The method produces a machine with low generalization error in less computational time. The results obtained in this research helps for clarifying statistical properties of a machine with variable basis functions, thus, a singular model such as multi-layer perceptrons.
已知多层感知器是一个奇异模型,其中Fisher信息矩阵在某些情况下可以是奇异的。奇异性来源于基函数的形状变化的参数基函数。为了揭示奇异模型的统计性质,本研究主要关注变量基函数。在基函数输出的限制下,导出了过拟合度的上界。例如,可以通过限制多层感知器中的输入权空间来实现限制。通过应用这一结果,我们表明,对于使用一个高斯单元的回归,训练中宽度参数经常得到一个非常小的值。另一方面,我们推导了从有限正交函数集合中选择基函数的学习机的训练误差和泛化误差的期望。这阐明了变基函数机器的AIC型模型选择准则需要目标函数的信息。我们用收缩法解决了这个问题。进一步,从变基函数的角度出发,提出了一种非参数回归的收缩方法。该方法在较短的计算时间内得到了一个泛化误差小的机器。本研究的结果有助于澄清具有可变基函数的机器的统计性质,因此,多层感知器等奇异模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of the expected prediction error of orthogonal regression with variable components
具有可变分量的正交回归的预期预测误差的估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsuyuki Hagiwara;Hiroshi Ishitani
  • 通讯作者:
    Hiroshi Ishitani
Relation between weight size and degree of over-fitting in neural network regression
  • DOI:
    10.1016/j.neunet.2007.11.001
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Hagiwara, Katsuyuki;Fukunaizu, Kenji
  • 通讯作者:
    Fukunaizu, Kenji
Orthogonal shrinkage methods for nonparametric regression under Gaussian noise
高斯噪声下非参数回归的正交收缩方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAGIWARA Katsuyuki其他文献

入門 統計的回帰とモデル選択
统计回归和模型选择简介
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nawa Kenji;Hagiwara Katsuyuki;Nakamura Kohji;HAGIWARA Katsuyuki;Katsuyuki Hagiwara;萩原 克幸
  • 通讯作者:
    萩原 克幸

HAGIWARA Katsuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAGIWARA Katsuyuki', 18)}}的其他基金

Research on model selection of multi-layer perceptron
多层感知器模型选择研究
  • 批准号:
    21500215
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了