The synthetic study by real algebraic geometry, from sub-Riemannian geometry to tropical geometry

实代数几何的综合研究,从亚黎曼几何到热带几何

基本信息

  • 批准号:
    22340030
  • 负责人:
  • 金额:
    $ 9.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2010
  • 资助国家:
    日本
  • 起止时间:
    2010-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

For singular surfaces associated to integral curves of exterior differential systems related to sub-Riemannian geometry and tropical geometry, we have realized the classification of singularities from real algebraic geometry, and we have completed their generic normal forms. From Legendre duality and control theory, we have classified singularities of tangential varieties to singularities of framed curves and surfaces, we have developed the notion of opening of mappings, and we have applied it to the classification for singularities of tangential varieties to general submanifolds. We have studied G2 sub-Riemannian geometry from non-linear control theory and the representation theory of real algebraic groups, and we have classified the related singularities. Moreover, we have developed the triality of D4 geometry and D4 singularity theory. We have completed the papers for all above themes, all of which already appeared or are under submission in international academic journals.
对于与次黎曼几何和热带几何有关的外微分系统的积分曲线所对应的奇异曲面,我们实现了从真实的代数几何中对奇异点的分类,并完成了它们的通有正规形。从Legendre对偶和控制论出发,我们把切簇的奇点分类为框架曲线曲面的奇点,发展了映射开的概念,并把它应用于一般子流形切簇奇点的分类。本文从非线性控制理论和真实的代数群的表示理论出发,研究了G2次黎曼几何,并对相关的奇性进行了分类。进一步发展了D_4几何的三重性和D_4奇点理论。我们已经完成了上述所有主题的论文,所有这些论文都已经在国际学术期刊上发表或正在提交。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generic bifurcations of framed curves in a space form and their envelopes
  • DOI:
    10.1016/j.topol.2011.09.024
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Ishikawa
  • 通讯作者:
    G. Ishikawa
Singularities of Tangent Varieties and Differential Systems
切线簇的奇异性和微分系统
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Faure;M. Tsujii;Goo Ishikawa;T. Kobayashi;T. Morita;T Ogawa;谷島賢二;M.Izumi;Keisuke Shiromoto;稲生啓行;重川 一郎;M.Sasada;Goo Ishikawa
  • 通讯作者:
    Goo Ishikawa
Singular path duality for Cartan distributions from geometric control theory (in Japanese)
几何控制理论中嘉当分布的奇异路径对偶性(日语)
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goo Ishikawa;Yumiko Kitagawa;Wataru Yukuno
  • 通讯作者:
    Wataru Yukuno
The D4-triality and singularities of tangent surfaces
D4-切面的试探性和奇点
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Ota;K.Shiromoto;熊谷隆;M. Maejima;Goo Ishikawa
  • 通讯作者:
    Goo Ishikawa
Openings of stable unfoldings
稳定展开的开口
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林怡伶;三嶋美和子;佐藤潤也;神保雅一;T. Sugawa;M.Machida;宍倉光広;仲田均;T. Kobayashi;Kenji Yajima;Masaki Izumi;G.Ishikawa
  • 通讯作者:
    G.Ishikawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GOO Ishikawa其他文献

GOO Ishikawa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了