On plane algebraic curves having only cusps as their singular points

在仅具有尖点作为奇点的平面代数曲线上

基本信息

  • 批准号:
    22540040
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2010
  • 资助国家:
    日本
  • 起止时间:
    2010-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Affine Algebraic Geometry
  • DOI:
    10.1090/conm/369
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Gutierrez;V. Shpilrain;Jietai Yu
  • 通讯作者:
    J. Gutierrez;V. Shpilrain;Jietai Yu
On rational cuspidal plane curves
关于有理尖平面曲线
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    安冨真一;田村純一;Kazuhiko Kurano;戸野恵太
  • 通讯作者:
    戸野恵太
研究成果
研究结果
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On the self-intersection number of the nonsingular models of cuspidal plane curves
关于尖形平面曲线非奇异模型的自交数
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Hara;T. Sawada and T. Yasuda;戸野 恵太
  • 通讯作者:
    戸野 恵太
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TONO Keita其他文献

TONO Keita的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

超準的手法を用いた代数多様体の特異点の研究
使用超实体方法研究代数簇的奇点
  • 批准号:
    24KJ1040
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
導波モード選択的導波路カプラ設計論と非エルミート光学系における特異点との関係解明
阐明非厄米光学系统中波导模式选择波导耦合器设计理论与奇点之间的关系
  • 批准号:
    24K08283
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
不確定特異点を持つD-加群と特異点理論の研究
不确定奇点D模及奇点理论研究
  • 批准号:
    24K06681
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
幾何学的特異点論の開発と応用
几何奇点理论的发展与应用
  • 批准号:
    24K06700
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
特異点光波による光誘起ナノスケール超伝導の創製
利用奇点光波创建光致纳米级超导性
  • 批准号:
    23K23246
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
特異点を持つ超曲面に対する変分問題及び幾何解析と離散曲面論の新展開
奇点超曲面的变分问题与几何分析及离散曲面理论的新进展
  • 批准号:
    23K20212
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
特異点の幾何学的不変量と高次元波面・混合型超曲面への応用
奇点的几何不变量及其在高维波前和混合超曲面中的应用
  • 批准号:
    24K06709
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新規多次元振動分光による反応ポテンシャル特異点の探究
使用新型多维振动光谱探索反应势奇点
  • 批准号:
    24K01444
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
代数幾何学の特異点論による機械学習理論の解析およびその応用
利用代数几何奇点理论分析机器学习理论及其应用
  • 批准号:
    24K15114
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
混標数の特異点論とそのF特異点論・双有理幾何学への応用
混合特性奇点理论及其在F奇点理论和双有理几何中的应用
  • 批准号:
    23K22383
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了