Duality of statistical optimality and physical optimality for spherical designs and their constructions

球形设计及其构造的统计最优性和物理最优性的对偶性

基本信息

  • 批准号:
    23654031
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

When we integrate some polynomial function on a n-dimensional sphere, if the integrand polynomial is at most degree 2, we clarified the condition on an optimal Euclidean design with two concentric spheres. Conditions on an optimal Euclidean design is given by (i) the ratio the radius of two spheres, (ii) the number of points chosen from each sphere and (iii) the configuration of points for each concentric sphere. We obtained such conditions that a cubature formula is optimal and gave constructions of Euclidean designs which satisfy the conditions. These results were accepted as papers for Sankha Indian Journal of Statistics, etc.Moreover, we introduced a notion of mutually orthogonal t-designs (t-MOD) overthe complex number field. We examined some conditions for a t-MOD to be optimal. And we find that t-MOD is equivalent to a quantum jump code.
当我们在n维球面上积分多项式函数时,如果被积多项式的次数至多为2,我们阐明了两个同心球面的最优欧氏设计的条件。最优欧氏设计的条件由(i)两个球的半径之比,(ii)从每个球中选择的点的数目和(iii)每个同心球的点的配置给出。给出了求积公式为最优的条件,并给出了满足这些条件的欧氏设计的构造。这些结果被接受为论文Sankha印度统计杂志等。此外,我们引入了一个概念,相互正交的t-设计(t-MOD)在复数域。我们研究了t-MOD最优的一些条件。并且我们发现t-MOD等价于一个量子跳跃码。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal equi-difference conflict-avoiding codes of length n=2^a3^bm and weight four
长度n=2^a3^bm、权重4的最优等差冲突避免码
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Lin;M. Mishima;M. Jimbo
  • 通讯作者:
    M. Jimbo
A q-Analogue of the Addressing Problem of Graphs by Graham and Pollak
  • DOI:
    10.1137/110831520
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saori Watanabe;Kota Ishii;M. Sawa
  • 通讯作者:
    Saori Watanabe;Kota Ishii;M. Sawa
Journal of Statistical Theory and Practice Special Issue: Combinatorial Configurations and Information Sciences
统计理论与实践杂志特刊:组合配置和信息科学
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Jimbo;S. Kageyama 編
  • 通讯作者:
    S. Kageyama 編
Tight Equi-Difference Conflict-Avoiding Codes of Odd Length and Weight Three
奇长奇重三紧等差冲突避免码
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Lin;M. Mishima;J. Sato;M. Jimbo
  • 通讯作者:
    M. Jimbo
A t-spontaneous emission error design and its application to secret sharing scheme
t-自发发射误差设计及其在秘密共享方案中的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林怡伶;神保雅一
  • 通讯作者:
    神保雅一
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JIMBO Masakazu其他文献

JIMBO Masakazu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JIMBO Masakazu', 18)}}的其他基金

Existence and constructions of a complete system of mutually orthogonal partial t-designs over complex fields and its application
复杂域互正交部分t设计完备系统的存在性、构造及其应用
  • 批准号:
    26610036
  • 财政年份:
    2014
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Combinatorial codes and their decoding algorithms related to various information transmission systems
各种信息传输系统相关的组合码及其译码算法
  • 批准号:
    22340016
  • 财政年份:
    2010
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combinatorial structures and algorithms commonly included in codes and pooling designs for genetic experiments
组合结构和算法通常包含在遗传实验的代码和池设计中
  • 批准号:
    18340024
  • 财政年份:
    2006
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Efficient algorithms of pooling experiments for gene analysis by utilizing group testing and Bayesian network
利用分组测试和贝叶斯网络进行基因分析的有效汇集实验算法
  • 批准号:
    15340035
  • 财政年份:
    2003
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applications of combinatorial designs to information transmission and DNA library screening
组合设计在信息传递和DNA文库筛选中的应用
  • 批准号:
    13554002
  • 财政年份:
    2001
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Constructions of array type block designs and their statistical optimality and efficiency
阵列型块设计的构造及其统计最优性和效率
  • 批准号:
    12640140
  • 财政年份:
    2000
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimality and Constructions of cyclically resolbable BIB designs and split-block designs
循环可分解BIB设计和分割块设计的最优性和构造
  • 批准号:
    10640133
  • 财政年份:
    1998
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal experimental design for correlated errors and its expert system
相关误差优化实验设计及其专家系统
  • 批准号:
    03680028
  • 财政年份:
    1991
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration of novel electromagnetic coupling in organic conductors by the combination of molecular arrangement and magnetic ordering
分子排列与磁有序相结合探索有机导体中新型电磁耦合
  • 批准号:
    23K03333
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of archaeal membrane protein complexes by the combination of database and AI
数据库与人工智能相结合研究古菌膜蛋白复合物
  • 批准号:
    23K05663
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Challenges for a Paradigm Shift in the Prevention of Colitis via Gut Microbiota through the Combination of Dietary Fiber and Exercise
通过膳食纤维和运动相结合,通过肠道微生物群预防结肠炎的范式转变面临的挑战
  • 批准号:
    23K16833
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
On chip vascular bed control by the combination of vasculogenesis and angiogensis
通过血管生成和血管生成相结合进行芯片上血管床控制
  • 批准号:
    23K13649
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the neural basis of time-flow perception by the combination of fMRI and electrophysiology in awake monkeys
结合功能磁共振成像和电生理学阐明清醒猴子时间流感知的神经基础
  • 批准号:
    22KJ2205
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of a novel therapeutic strategy for esophageal squamous cell carcinoma with the combination of trifluridine and Wee1 inhibitor
三氟尿苷联合Wee1抑制剂建立食管鳞癌新治疗策略
  • 批准号:
    22K07960
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SAFE-LCD: Can the combination of continuous glucose monitoring and a digital low calorie diet programme make Type 2 diabetes remission achievable and safe in people on insulin therapy?
SAFE-LCD:连续血糖监测和数字化低热量饮食计划相结合能否使接受胰岛素治疗的患者安全且安全地缓解 2 型糖尿病?
  • 批准号:
    10036336
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Collaborative R&D
Multicomponent positive psychotherapy: the combination of character strengths
多元积极心理治疗:性格优势的结合
  • 批准号:
    22K03135
  • 财政年份:
    2022
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Getting more from low-resolution methods: the combination of SAXS and atomistic molecular simulation
从低分辨率方法中获取更多信息:SAXS 与原子分子模拟的结合
  • 批准号:
    2621328
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了