ゲルマニウム/ひずみーシリコンヘテロ接合を用いたトンネル電界効果トランジスタ

使用锗/应变硅异质结的隧道场效应晶体管

基本信息

  • 批准号:
    14J06072
  • 负责人:
  • 金额:
    $ 1.39万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

1. Back biasing effectPositive VB yields a significant increase in Ion and decrease in SS in a wide range of middle ID region in spite of the increase in Ioff. Negative VB is attributable to the suppressed tunneling current, resulting in lower SSmin. It is revealed that tunneling current, especially vertical tunneling can occur from Ge-source to back interface of sSi-channel and current can flow through the inversion layer formed near back interface of sSi-channel. This vertical tunneling current shows high drain on current than lateral tunneling current because of high tunneling efficiency and these vertically tunneled electrons make an n-source at beneath the Ge-source and near back interface of sSi channel. However, the sSi channel is mainly controlled by VG because of much thinner EOT of front gate insulators than that of BOX. Consequently, this positive VB-induced vertical tunneling is greatly promising to improve the performance of Ge/sSi TFETs and it can be effectively utilized for improving the TFET performance by applying the synchronized VB with VG in multi-gate structure such as Fin FET, nanowire and so on.2. Drain engineeringIt is experimentally confirmed that the modified drain doping concentration of 1018 cm-3 is suitable for further performance improvement.3. EOT scalingIn this study the EOT was scaling from 2.5 nm to 1.5 nm by changing the gate dielectric material from Al2O3 to HfO2. It is found that higher on current is obtained in thinner EOT device. However, the leakage current increases in HfO2-device because of large Dit with Ge and Si.
1.反向偏置效应正的VB在大范围的中间ID区产生显著的Ion增加和SS减少,尽管Ioff增加。负VB归因于抑制的隧穿电流,导致较低的SSmin。结果表明,从Ge源极到sSi沟道背界面可以产生隧穿电流,特别是垂直隧穿电流,电流可以通过sSi沟道背界面附近形成的反型层。由于高隧穿效率,该垂直隧穿电流显示出比横向隧穿电流高的漏极导通电流,并且这些垂直隧穿的电子在Ge源极下方和sSi沟道的背界面附近形成n源极。然而,sSi沟道主要由VG控制,因为前栅绝缘体的EOT比BOX薄得多。因此,这种垂直隧穿效应对改善Ge/sSi TFET的性能具有很大的应用前景,将VB与VG同步应用于多栅结构如Fin FET、纳米线等,可以有效地改善TFET的性能.漏极工程实验证实,1018 cm-3的漏极掺杂浓度适合进一步提高性能. EOT缩放在这项研究中,通过将栅极电介质材料从Al 2 O3改变为HfO 2,EOT从2.5 nm缩放到1.5 nm。结果表明,较薄的EOT器件具有较高的导通电流。然而,由于Ge和Si的大Dit,HfO 2-器件的漏电流增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ge/Si Heterojunction Tunnel Field-Effect Transistors and Their Post Metallization Annealing Effect
  • DOI:
    10.1109/ted.2014.2371038
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Minsoo Kim;Y. Wakabayashi;M. Yokoyama;R. Nakane;M. Takenaka;S. Takagi
  • 通讯作者:
    Minsoo Kim;Y. Wakabayashi;M. Yokoyama;R. Nakane;M. Takenaka;S. Takagi
Ge/Si Hetero-Junction TFETs with In-situ Boron-Doped Ge-Source
具有原位硼掺杂 Ge 源的 Ge/Si 异质结 TFET
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minsoo Kim;Yuki K. Wakabayashi;Masafumi Yokoyama;Ryosho Nakane;Mitsuru Takenaka;and Shinichi Takagi
  • 通讯作者:
    and Shinichi Takagi
Effects of strain, interface states and back bias on electrical characteristics of Ge-source UTB strained-SOI tunnel FETs
应变、界面态和反向偏压对 Ge 源 UTB 应变 SOI 隧道 FET 电特性的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. -S. Kim;Y. -H Kim;M. Yokoyama;R. Nakane;S. -H. Kim;M. Takenaka and S. Takagi;Minsoo Kim
  • 通讯作者:
    Minsoo Kim
極めて低い消費電力で動くトンネル電界効果トランジスターを開発
开发功耗极低的隧道场效应晶体管
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
High I on /I off Ge-source ultrathin body strained-SOI Tunnel FETs - impact of channel strain, MOS interfaces and back gate on the electrical properties
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minsoo Kim;Y. Wakabayashi;R. Nakane;M. Yokoyama;M. Takenaka;Takagi Shinichi
  • 通讯作者:
    Minsoo Kim;Y. Wakabayashi;R. Nakane;M. Yokoyama;M. Takenaka;Takagi Shinichi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

金 ミンス其他文献

金 ミンス的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了