低電圧動作シリコン系 Beyond CMOSデバイスの研究

基于低压工作硅的Beyond CMOS器件研究

基本信息

  • 批准号:
    14J09099
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

This study suggests a new operation mechanism, Vth self-adjustment, for sub-0.3 V operation even enhancing stability of SRAM cells. Vth self-adjusting MOSFETs show two kinds of Vth states in dynamic characteristics, while they show improved on/off current ratio and S-factor in static characteristics by time-lag of tunneling phenomenon. The Vth shift in dynamic characteristics can be used for enhancing stability of SRAM cells. Furthermore, improved on/off current ratio and S-factor are suitable for low voltage operation. However, Vth self-adjusting MOSFETs with planar structure show crucial short channel effects due to limitation of vertical scaling. Thus, gate-all-around (GAA) nanowire structure is introduced to Vth self-adjusting MOSFETs for strong immunity to short channel effects. In order to enhance Vth self-adjusting characteristics, the GAA nanowire structure is modified through enlarged body factor difference between dynamic and static characteristics. Hence, Vth shift and S-factor improvement become enhanced. Also, tri-gate nanowire MOSFETs with floating gates are successfully fabricated and they show excellent device performance. Finally, they show Vth self-adjusting characteristics even in ultra-low Vdd and these results are recomposed to 6 transistors (6T) SRAM cells using simulation. The 6T SRAM cells with Vth self-adjustment clearly show stability improvement at Vdd = 0.1 V.
这项研究提出了一种新的操作机制,Vth自调整,亚0.3 V的操作,甚至提高SRAM单元的稳定性。Vth自调整MOSFET在动态特性中表现出两种Vth状态,而在静态特性中,由于隧穿现象的时滞作用,Vth自调整MOSFET的通断电流比和S因子得到改善。动态特性中的Vth偏移可用于增强SRAM单元的稳定性。此外,改进的开/关电流比和S因子适合于低电压操作。然而,具有平面结构的Vth自调整MOSFET由于垂直缩放的限制而显示出关键的短沟道效应。因此,栅极全包围(GAA)纳米线结构被引入到Vth自调节MOSFET中,以增强对短沟道效应的免疫力。为了增强Vth自调节特性,通过增大动态和静态特性之间的体因子差来修改GAA纳米线结构。因此,Vth偏移和S因子改善变得增强。此外,三栅极纳米线MOSFET的浮栅成功地制作,它们显示出优异的器件性能。最后,它们显示了Vth自调整特性,即使在超低漏电流,这些结果是重组到6晶体管(6 T)SRAM单元使用模拟。具有Vth自调整功能的6 T SRAM单元在Vth = 0.1 V时的稳定性明显提高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of Delay Time in Subthreshold CMOS Circuits Operating at Ultra-Low Supply Voltage
超低电源电压下工作的亚阈值CMOS电路的延迟时间分析
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seung-Min Jung;Takuya Saraya;and Toshiro Hiramoto
  • 通讯作者:
    and Toshiro Hiramoto
Effect of drain-induced barrier lowering on performance of ultralow-supply-voltage region
漏极感应势垒降低对超低电源电压区域性能的影响
  • DOI:
    10.7567/jjap.53.124301
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Seung-Min Jung;Tomoko Mizutani;and Toshiro Hiramoto
  • 通讯作者:
    and Toshiro Hiramoto
Tri-gate Floating Gate Nanowire MOSFETs with Vth Self-adjustment for Improvement of SRAM Cells Stability in Sub-0.3 V Operation
具有 Vth 自调节功能的三栅极浮栅纳米线 MOSFET,可提高 SRAM 单元在低于 0.3 V 运行时的稳定性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seung-Min Jung;Takuya Saraya;Kiyoshi Takeuchi;Masaharu Kobayashi;and Toshiro Hiramoto
  • 通讯作者:
    and Toshiro Hiramoto
Ultra-low voltage (0.1V) operation of Vth self-adjusting MOSFET and SRAM cell
Analysis of Delay Time Degradation of Ultra-Low Supply Voltage CMOS Circuit Operating in Subthreshold Region
亚阈值区超低电源电压CMOS电路延迟时间劣化分析
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seung-Min Jung;Takuya Saraya;Masaharu Kobayashi;and Toshiro Hiramoto
  • 通讯作者:
    and Toshiro Hiramoto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

鄭 承旻其他文献

鄭 承旻的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了