Matrix/operator analysis (inequalities, mean, majorization) and applications to quantum information

矩阵/算子分析(不等式、均值、多数化)及其在量子信息中的应用

基本信息

  • 批准号:
    17K05266
  • 负责人:
  • 金额:
    $ 2.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Different quantum divergences in general von Neumann algebras
一般冯诺依曼代数中的不同量子散度
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hiai and Y. Lim;Song Liang;針谷 祐;針谷 祐;F. Hiai;日合文雄;F. Hiai;F. Hiai
  • 通讯作者:
    F. Hiai
Log-majorization and Lie-Trotter formula for the Cartan barycenter
Cartan 重心的对数极大化和 Lie-Trotter 公式
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hiai and Y. Lim;Song Liang;針谷 祐;針谷 祐;F. Hiai;日合文雄;F. Hiai
  • 通讯作者:
    F. Hiai
Lectures on Selected Topics in von Neumann Algebras
冯诺依曼代数精选主题讲座
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hiai and Y. Lim;Song Liang;針谷 祐;針谷 祐;F. Hiai;日合文雄;F. Hiai;F. Hiai;F. Hiai;F. Hiai
  • 通讯作者:
    F. Hiai
Log-majorization and Lie-Trotter formula for the Cartan barycenter on probability measure spaces
概率测度空间上嘉当重心的对数极大化和 Lie-Trotter 公式
  • DOI:
    10.1016/j.jmaa.2017.03.027
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    関口次郎;F. Hiai and Y. Lim
  • 通讯作者:
    F. Hiai and Y. Lim
ブダペスト工業経済大学(ハンガリー)
布达佩斯科技经济大学(匈牙利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hiai Fumio其他文献

Hiai Fumio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hiai Fumio', 18)}}的其他基金

Matrix/operator inequalities and applications to quantum information and free probability
矩阵/算子不等式及其在量子信息和自由概率中的应用
  • 批准号:
    26400103
  • 财政年份:
    2014
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

分数冪ラプラス作用素を伴う非線形拡散方程式に関する変分解析および数値解析
具有分数幂拉普拉斯算子的非线性扩散方程的变分和数值分析
  • 批准号:
    24KJ0381
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
頂点作用素代数を用いた有限群のY表現の研究
用顶点算子代数研究有限群的Y表示
  • 批准号:
    24K06658
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環・無限次元線形作用素と幾何学的トポロジー
算子代数、无限维线性算子和几何拓扑
  • 批准号:
    24K06704
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環を用いた群作用の研究
使用算子代数研究群行为
  • 批准号:
    24K06759
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ユニタリ作用素のスペクトル理論と準古典解析的方法による共鳴散乱の研究
利用酉算子谱理论和准经典分析方法研究共振散射
  • 批准号:
    24K06761
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数体から構成される作用素環と付随する不変量の研究
由数域和相关不变量组成的算子代数的研究
  • 批准号:
    24K06780
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環における条件付き期待値と分類戦略の応用
条件期望和分类策略在算子代数中的应用
  • 批准号:
    24K06762
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
行列シュレディンガー作用素の半古典解析
矩阵薛定谔算子的半经典分析
  • 批准号:
    24K06790
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
合成作用素と力学系の双方向的研究
复合算子与动力系统的交互研究
  • 批准号:
    24K16950
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
力学系に関わる作用素環に対する双対性の研究
动力系统相关算子代数的对偶性研究
  • 批准号:
    24K16934
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了