Understanding novel quantum spin liquids with high energy theory

用高能理论理解新型量子自旋液体

基本信息

项目摘要

In the second year of my JSPS Fellowship, I have built further on the spectacular progress I made during the first year.My main focus has been on a simple model of fracton excitations in a curved space. In 2019, I showed how my model could reproduce key results from the holographic formulation of quantum gravity, including the iconic Ryu-Takanagi formula for entanglement entropy [H. Yan, Phys. Rev. B 99, 155126 (2019)]. In two further single-author papers, I have extended my work to reveal its connections with the bit-thread model [H. Yan, Phys. Rev. B 100, 245138 (2019)], and Lifshitz gravity [H. Yan, arXiv:1911.01007]. This is an impressive body of work, and has earned me considerable credit in the wider community.My other contribution to the burgeoning field fractons is to show that a simple model of breathing-pyrochlore magnet meets the conditions needed to support fracton excitations. This work, which was described in last year's report, has also attracted considerable attention, and attracted invitations for seminars at PSI (Switzerland) and MIT. The associated paper [H. Yan et al., Phys. Rev. Lett 124, 127203 (2020)], was singled out as an Editor's Selection, and reviewed in an article in the APS Magazine "Physics".In addition to this, I also worked on a collaborative project to explore whether machine-learning techniques could be used to identify and characterise spin liquids. This project was also a success, with the machine able to independently reconstruct the phase diagram of a model of quantum spin ice [J. Greitemann et al., Phys. Rev. B 100, 174408 (2019)]
在JSPS奖学金的第二年,我在第一年取得的惊人进展的基础上又取得了进一步的进展,我的主要精力集中在弯曲空间中分形子激发的简单模型上。在2019年,我展示了我的模型如何再现量子引力全息公式的关键结果,包括纠缠熵的标志性Ryu-Takanagi公式[H。Yan,Phys. Rev. B 99,155126(2019)]。在另外两篇单作者论文中,我扩展了我的工作,揭示了它与位线程模型的联系[H。Yan,Phys. Rev. B 100,245138(2019)]和Lifshitz引力[H. Yan,arXiv:1911.01007].这是一个令人印象深刻的工作,并赢得了我在更广泛的社区相当大的信誉。我的另一个贡献,新兴的领域fracton是显示,一个简单的模型呼吸烧绿石磁铁满足所需的条件,支持fracton激发。去年的报告中介绍的这项工作也引起了相当大的注意,并吸引了在PSI(瑞士)和麻省理工学院举办研讨会的邀请。相关文献[H. Yan等人,《物理评论快报》124,127203(2020)],被选为编辑精选,并在APS杂志“物理”的一篇文章中进行了评论。除此之外,我还参与了一个合作项目,探索机器学习技术是否可以用于识别和识别旋转液体。这个项目也是成功的,机器能够独立地重建量子自旋冰模型的相图[J. Greitemann et al.,物理修订版B 100,174408(2019)]

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental signatures of emergent quantum electrodynamics in Pr2Hf2O7
Pr2Hf2O7 中涌现量子电动力学的实验特征
  • DOI:
    10.1038/s41567-018-0116-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Sibille Romain;Gauthier Nicolas;Yan Han;Ciomaga Hatnean Monica;Ollivier Jacques;Winn Barry;Filges Uwe;Balakrishnan Geetha;Kenzelmann Michel;Shannon Nic;Fennell Tom
  • 通讯作者:
    Fennell Tom
Half moons are pinch points with dispersion
  • DOI:
    10.1103/physrevb.98.140402
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Han Yan;Rico Pohle;N. Shannon
  • 通讯作者:
    Han Yan;Rico Pohle;N. Shannon
Seeing the Light?
看到光了吗?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hyperbolic fracton model, subsystem symmetry, and holography
双曲分形模型、子系统对称性和全息术
  • DOI:
    10.1103/physrevb.99.155126
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yan Han;Benton Owen;Jaubert L. D. C.;Shannon Nic;Yan Han
  • 通讯作者:
    Yan Han
Fracton Topological Order and Holography
分形拓扑秩序和全息术
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Han;Pohle Rico;Shannon Nic;Han Yan;Han Yan;Han Yan
  • 通讯作者:
    Han Yan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAN HAN其他文献

YAN HAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Robustness of three-dimensional fracton topological order
三维分形拓扑序的鲁棒性
  • 批准号:
    398066393
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grants
INVESTIGATION OF RIGIDITY PERCOLATION, MEDIUM-RANGE STRUCTURES AND FRACTON IN MULTI-COMPOUND GLASSY SEMICONDUCTORS
多化合物玻璃半导体中的刚性渗流、中程结构和分形研究
  • 批准号:
    09440117
  • 财政年份:
    1997
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Cooperative Phenomena on Grass Transition of Amorphous Semiconductors -Hierarchical Energy Distribution and Fractal Structure-
非晶半导体晶格转变的协同现象-分级能量分布和分形结构-
  • 批准号:
    07640502
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of low-energy magnetic excitations with high energy-resolution neutron spectroscopy
高能分辨率中子谱低能磁激发研究
  • 批准号:
    06452063
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Dynamics of Fractal Structures
分形结构动力学
  • 批准号:
    03044012
  • 财政年份:
    1991
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
PHASE TRANSITIONS AND EXCITATIONS IN FRACTAL MAGNETS
分形磁体中的相变和激发
  • 批准号:
    03402009
  • 财政年份:
    1991
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
Dynamical properties of large-scale fractal networks
大规模分形网络的动力学特性
  • 批准号:
    02452044
  • 财政年份:
    1990
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Studies on Fracton in Silica Aerogels by Ramman Scattering
二氧化硅气凝胶中分形子的拉曼散射研究
  • 批准号:
    02640243
  • 财政年份:
    1990
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了