Language-independent, multi-modal, and data-efficient approaches for speech synthesis and translation
独立于语言、多模式且数据高效的语音合成和翻译方法
基本信息
- 批准号:21K11951
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this second year of the project, we looked at two main topics: language-independent, data-efficient text-to-speech synthesis for low-resource languages using self-supervised speech representations, and automatic mean opinion score prediction.Self-supervised representations for speech have shown remarkable usefulness for many downstream speech-related tasks, and have been shown to contain phonetic information. We therefore chose these as an intermediate representation for text-to-speech synthesis trained on data from many languages, which can then be fine-tuned to a new language using only a small amount of data. This is ongoing work in progress, and we are collaborating with researchers from the National Research Council of Canada and the University of Edinburgh.We have also identified automatic evaluation of synthesized speech as an important topic for low-resource languages, since finding listeners to participate in listening tests can be especially difficult for these languages. In collaboration with Nagoya University and Academia Sinica, we co-organized the first VoiceMOS Challenge, a shared task for automatic mean opinion score (MOS) prediction for synthesized speech. The challenge attracted 22 participating teams from academia and industry, and we ran a special session about the challenge at Interspeech 2022. This challenge has advanced the field by generating a great deal of interest in this topic.
在这个项目的第二年,我们研究了两个主要主题:使用自监督语音表示的低资源语言的独立的、数据高效的文本到语音合成,以及自动平均意见得分预测。语音的自监督表示在许多与语音相关的下游任务中显示出显著的实用性,并且已被证明包含语音信息。因此,我们选择这些作为文本到语音合成的中间表示,这些合成是在许多语言的数据上训练的,然后可以仅使用少量数据对新语言进行微调。这项工作正在进行中,我们正在与加拿大国家研究委员会和爱丁堡大学的研究人员合作。我们还将合成语音的自动评估确定为低资源语言的一个重要主题,因为寻找听众参与听力测试对于这些语言来说尤其困难。我们与名古屋大学和中央研究院合作,共同举办了第一届VoiceMOS挑战赛,这是一项针对合成语音的自动平均意见评分(MOS)预测的共享任务。这个挑战吸引了来自学术界和工业界的22个参赛团队,我们在Interspeech 2022上举办了一个关于这个挑战的特别会议。这一挑战引起了人们对这一主题的极大兴趣,从而推动了这一领域的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Interplay between Sparsity, Naturalness, Intelligibility, and Prosody in Speech Synthesis
- DOI:10.1109/icassp43922.2022.9747728
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Cheng-I Lai;Erica Cooper;Yang Zhang;Shiyu Chang;Kaizhi Qian;Yiyuan Liao;Yung-Sung Chuang;Alexander H. Liu;J. Yamagishi;David Cox;James R. Glass
- 通讯作者:Cheng-I Lai;Erica Cooper;Yang Zhang;Shiyu Chang;Kaizhi Qian;Yiyuan Liao;Yung-Sung Chuang;Alexander H. Liu;J. Yamagishi;David Cox;James R. Glass
The VoiceMOS Challenge 2022
2022 年 VoiceMOS 挑战赛
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wen-Chin Huang;Erica Cooper;Yu Tsao;Hsin-Min Wang;Tomoki Toda;Junichi Yamagishi
- 通讯作者:Junichi Yamagishi
Generalization Ability of MOS Prediction Networks
MOS预测网络的泛化能力
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Erica Cooper;Wen-Chin Huang;Tomoki Toda;Junichi Yamagishi
- 通讯作者:Junichi Yamagishi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cooper Erica其他文献
そのエージェントの声、合っていますか?-声質変換技術と印象適合・人工感制御-
代理人的声音是否正确?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhang Lin;Wang Xin;Cooper Erica;Yamagishi Junichi;齋藤大輔 - 通讯作者:
齋藤大輔
Multi-task Learning in Utterance-level and Segmental-level Spoof Detection
话语级和段级欺骗检测中的多任务学习
- DOI:
10.21437/asvspoof.2021-2 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhang Lin;Wang Xin;Cooper Erica;Yamagishi Junichi - 通讯作者:
Yamagishi Junichi
Cooper Erica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cooper Erica', 18)}}的其他基金
Encoder Factorization for Capturing Dialect and Articulation Level in End-to-End Speech Synthesis
用于捕获端到端语音合成中的方言和发音水平的编码器分解
- 批准号:
19K24372 - 财政年份:2019
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
相似海外基金
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 2.66万 - 项目类别:
Development of a Sign Language Recognition Engine Using Self-Supervised Learning Methods
使用自我监督学习方法开发手语识别引擎
- 批准号:
23K17511 - 财政年份:2023
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Self-Supervised Learning to Improve Transferability of Agricultural Deep Learning Models
自监督学习提高农业深度学习模型的可迁移性
- 批准号:
574936-2022 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
University Undergraduate Student Research Awards
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:
2211907 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Standard Grant
Broader Self-Supervised Learning with applications in anomaly detection, tabular data, and visual reinforcement learning
更广泛的自我监督学习在异常检测、表格数据和视觉强化学习中的应用
- 批准号:
577169-2022 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Alliance Grants
One-shot self-supervised learning for high quality 3D shape scanning
用于高质量 3D 形状扫描的一次性自我监督学习
- 批准号:
22K17907 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Biologically-plausible Deep Learning framework to model self-supervised learning in the visual cortex
一种生物学上合理的深度学习框架,用于模拟视觉皮层的自我监督学习
- 批准号:
566601-2021 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Measuring Cancer Prognosis with Self-Supervised Learning
通过自我监督学习衡量癌症预后
- 批准号:
2766128 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Studentship
A Biologically-plausible Deep Learning framework to model self-supervised learning in the visual cortex
一种生物学上合理的深度学习框架,用于模拟视觉皮层的自我监督学习
- 批准号:
566601-2021 - 财政年份:2021
- 资助金额:
$ 2.66万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum enhanced self supervised learning
量子增强自监督学习
- 批准号:
2607531 - 财政年份:2021
- 资助金额:
$ 2.66万 - 项目类别:
Studentship