Development of differential geometric study of surfaces starting from the value distribution of the Gauss map

从高斯图的值分布出发进行曲面微分几何研究的发展

基本信息

  • 批准号:
    23K03086
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

川上 裕其他文献

A natural compactification of the Gromov-Hausdorff space
Gromov-Hausdorff 空间的自然紧化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Inoguchi Jun-ichi;Lee Ji-Eun;Pham Hoang Ha,川上 裕,渡邉 元嗣;Takashi Shioya;Goo Ishikawa;深谷友宏;Shoji Yokura;山内貴光;塩谷 隆;佐藤進;深谷友宏;Ryo Takahashi;Jun O'Hara;Toni Annala and Shoji Yokura;塩谷 隆;川上 裕;Shin Satoh;Goo Ishikawa;山内貴光;Tomohiro Fukaya;塩谷 隆
  • 通讯作者:
    塩谷 隆
粗コンパクト化とGromov 積の一般化
Gromov 产品的粗略压缩和泛化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Inoguchi Jun-ichi;Lee Ji-Eun;Pham Hoang Ha,川上 裕,渡邉 元嗣;Takashi Shioya;Goo Ishikawa;深谷友宏;Shoji Yokura;山内貴光;塩谷 隆;佐藤進;深谷友宏;Ryo Takahashi;Jun O'Hara;Toni Annala and Shoji Yokura;塩谷 隆;川上 裕;Shin Satoh;Goo Ishikawa;山内貴光;Tomohiro Fukaya;塩谷 隆;Yu Kawakami;Inoguchi Jun-ichi;Goo Ishikawa;Shin Satoh;Anatoly Libgober and Shoji Yokura;山内貴光;Ryo Takahashi;深谷友宏;今井 淳;Takashi Shioya;Shin Satoh;山内貴光
  • 通讯作者:
    山内貴光
神経回路形成因子LOTUSは神経突起伸長を促進する.
神经回路形成因子 LOTUS 促进神经突生长。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    栗原 裕司;川上 裕;竹居 光太郎.
  • 通讯作者:
    竹居 光太郎.
Recent topics on the study of the Gauss images of minimal surfaces
最小曲面高斯图像研究的最新主题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Fujimori;Y. Kawakami;M. Kokubu;W. Rossman;M. Umehara;K. Yamada;Yu Kawakami;川上 裕
  • 通讯作者:
    川上 裕
Analysis of visual abnormalities in synucleinopathy
突触核蛋白病视觉异常分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    天草 善信;井口 洋平;横井 聡;川上 裕;勝野 雅央
  • 通讯作者:
    勝野 雅央

川上 裕的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ラプラシアン固有値最大化と極小曲面
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    23K22393
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
高種数および高余次元の周期的な極小曲面における幾何的量の研究
高亏格高共维周期极小曲面几何量的研究
  • 批准号:
    24K06750
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
超曲面と極小曲面の幾何学
超曲面和最小曲面的几何形状
  • 批准号:
    24K06701
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Computational Design of Multi-functional Minimal-Surface Lattice Structures
合作研究:多功能最小表面晶格结构的计算设计
  • 批准号:
    2130668
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
ERI: Understanding the Thermomechanical Response of Sandwich Structures with Triply Periodic Minimal Surface
ERI:了解具有三周期最小表面的夹层结构的热机械响应
  • 批准号:
    2138459
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    22H01122
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Computational Design of Multi-functional Minimal-Surface Lattice Structures
合作研究:多功能最小表面晶格结构的计算设计
  • 批准号:
    2130694
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Machine learning-based design of triply periodic minimal surface structures
基于机器学习的三周期最小表面结构设计
  • 批准号:
    DE210101676
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Early Career Researcher Award
Monitoring the efficacy of minimal surface disturbance approaches
监测最小表面扰动方法的有效性
  • 批准号:
    537625-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
幾何学的不変量による周期的極小曲面のモジュライ空間の研究
几何不变量引起的周期极小曲面模空间的研究
  • 批准号:
    20K03616
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了