AUSLearn: AUtomated Sample Learning for Object Recognition
AUSLearn:用于对象识别的自动样本学习
基本信息
- 批准号:FT210100228
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:ARC Future Fellowships
- 财政年份:2022
- 资助国家:澳大利亚
- 起止时间:2022-06-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to enable computers to learn how to effectively use training samples for object recognition. Training sample is the only source used by computers to learn recognising objects. This project creates a new research direction that will enable the first full exploration of the power of samples. The aims will be enabled by leveraging the recent advances in reinforcement learning, fast training algorithms, and by developing novel deep learning algorithms. The new algorithms will benefit a wide range of applications, e.g. to effectively use car crash training samples for accurately identifying potential road crashes in transport and to effectively use rare medical imaging training data for robustly diagnosing diseases in health.
该项目旨在使计算机能够学习如何有效地使用训练样本进行对象识别。训练样本是计算机学习识别物体的唯一来源。该项目创建了一个新的研究方向,将首次全面探索样本的力量。这些目标将通过利用强化学习、快速训练算法的最新进展以及开发新的深度学习算法来实现。新算法将有利于广泛的应用,例如有效地使用车祸训练样本来准确识别运输中潜在的道路碰撞,并有效地使用罕见的医学成像训练数据来稳健地诊断健康疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Wanli Ouyang其他文献
Prof Wanli Ouyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Cryogen Free Split Pair Magnet Cryostat with Optical Access and Automated Sample Rotation
具有光学接入和自动样品旋转功能的无制冷剂分裂对磁体低温恒温器
- 批准号:
531527874 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
Improving extraction success of FFPE samples with automated and reliable microfluidic sample preparation
通过自动化、可靠的微流体样品制备提高 FFPE 样品的提取成功率
- 批准号:
10547272 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Advanced tandem quadrupole mass spectrometer with an automated sample extractor for a multiuser interdisciplinary translational research facility
带有自动样品提取器的先进串联四极杆质谱仪,适用于多用户跨学科转化研究设施
- 批准号:
MR/X012565/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Developing an Automated Drill Cutting Sample Collection and Analysis System
开发自动钻削样品采集和分析系统
- 批准号:
519781-2017 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Applied Research and Development Grants - Level 2
Developing an Automated Drill Cutting Sample Collection and Analysis System
开发自动钻削样品采集和分析系统
- 批准号:
519781-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Applied Research and Development Grants - Level 2
Library of protein-nanoparticle interactions: Automated sample handling and low-cost proteomics
蛋白质-纳米粒子相互作用库:自动化样品处理和低成本蛋白质组学
- 批准号:
1901579 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Topic 353: Highly Accurate Low Cost ctDNA Diagnostics with Magnetic Nanoparticle Enabled Automated Sample Prep - Moonshot
主题 353:利用磁性纳米粒子实现自动化样品制备的高精度低成本 ctDNA 诊断 - Moonshot
- 批准号:
10018679 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Developing an Automated Drill Cutting Sample Collection and Analysis System
开发自动钻削样品采集和分析系统
- 批准号:
519781-2017 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Applied Research and Development Grants - Level 2
Acquisition of a New XRF Spectrometer and Automated Sample Fusion Furnace
购置新型 XRF 光谱仪和自动样品熔炉
- 批准号:
1764397 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Developing an Automated Drill Sample Collector
开发自动钻孔样本收集器
- 批准号:
516600-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Applied Research and Development Grants - Level 1