Adaptive Approximation Algorithms for Sparse Data Representation

稀疏数据表示的自适应逼近算法

基本信息

  • 批准号:
    79766559
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2008
  • 资助国家:
    德国
  • 起止时间:
    2007-12-31 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

In the second period of this project we focus on the development and numerical analysis of noveladaptive approximation methods for high-dimensional signal data processing, where our joint researchwill provide efficient multiscale algorithms relying on modern tools from approximation theory, harmonical analysis, differential geometry, and algebraic topology. Special emphasis is placed on (a)scattered data denoising by using wavelet transforms and on (b) nonlinear dimensionality reductionby manifold learning. In (a), we will generalize our previous results on the Easy Path Wavelet Transform (EPWT), from image data to noisy scattered data taken from high-dimensional signals. To this end, we will develop new denoising methods based on diffusion maps and wavelet transforms along random paths. Moreover, we will extend our previous theoretical results on asymptotic N-term approximations to obtain optimally sparse data representations for piecewise H¨older smooth functionson manifolds by the EPWT. In (b), we will continue our joint research concerning the design andnumerical analysis of efficient, robust and reliable nonlinear dimensionality reduction methods, whereadaptive multiscale techniques, persistent homology methods, and meshfree kernel-based approximation schemes will play a key role. The new methods will be applied to relevant problems for the separation, classification, and compression of high-dimensional signals.
在这个项目的第二阶段,我们专注于开发和数值分析的noveladaptive逼近方法的高维信号数据处理,我们的联合researchwill提供有效的多尺度算法依赖于现代工具,从近似理论,谐波分析,微分几何,代数拓扑。特别强调的是(a)分散的数据去噪使用小波变换和(B)非线性降维流形学习。在(a)中,我们将推广我们以前的易路径小波变换(EPWT)的结果,从图像数据到从高维信号中提取的噪声散射数据。为此,我们将开发新的去噪方法的基础上扩散地图和小波变换沿着随机路径。此外,我们将推广我们以前的理论结果的渐近N项逼近获得最佳稀疏数据表示的分段H?older光滑函数在流形上的EPWT。在(B)中,我们将继续我们的联合研究,涉及有效的,鲁棒的和可靠的非线性降维方法的设计和数值分析,其中自适应多尺度技术,持久同源方法和无网格核基近似方案将发挥关键作用。新方法将应用于高维信号的分离、分类和压缩等相关问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Armin Iske其他文献

Professor Dr. Armin Iske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Approximation Algorithms for Restricted Invertibility and Experimental Design
受限可逆性的近似算法和实验设计
  • 批准号:
    576020-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
  • 批准号:
    573063-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了