MICRO-HEAT TRANSFER MECHANISM IN A BOUNDARY LAYER INDUCED BY ACOUSTIC OSCILLATION AND THE DEVELOPMENT OF THERMOACOUSTIC THEORY

声振荡引起的边界层微传热机制及热声理论发展

基本信息

  • 批准号:
    09650257
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

It is well known that the boundary layer is formed by a sinusoidal oscillation. The thickness of this boundary layer (referred to as the depth of penetration) and thermal flow behavior there control the system performance of acoustic resonance-tube refrigerator. The scaling parameters of such heat transfer are derived based on the theoretical and numerical analysis as follows : the Prandtl number, the oscillation Reynolds number, the Strohal number with respect to the amplitude of fluid oscillation and the stack distance, the Strohal number with respect to the amplitude and the stack length and the heat capacity ratio of the stack and the fluid. Comparison between the experimental data of temperature distribution along the stack and the linearized thermoacoustic theory indicated a prime importance of the Strohal number. One of the important factors related to the Strohal. number is an acoustic streaming induced by the existence of fluid viscosity. Then the flow visualizing study was conducted to look insight into the influence of the stack on the streaming. The acoustic streaming showed characteristic feature that two vortices appeared at both sides of the stack and moreover that these two vortices were combined with each other by the through flow between them. This suggested the importance to take such vortices and through flow into account in the development of prediction model. Alternative approach to improve the performance is the control of the phase difference between the velocity and pressure fluctuation, and/or veloci es at both ends of the stack. One of the typical techniques is to install the by-pass between the acoustic driver and the closed end of the resonance tube. Then the by-pass with a resonance box has shown the potential to improve the performance.
众所周知,边界层是由正弦振荡形成的。该边界层的厚度(即穿透深度)和边界层的热流行为控制着声谐振管制冷机的系统性能。基于理论和数值分析,导出了该传热的标度参数:普朗特数、振荡雷诺数、与流体振荡振幅和堆距有关的斯特罗哈尔数、与振幅和堆长有关的斯特罗哈尔数以及堆与流体的热容比。将沿堆温度分布的实验数据与线性化热声理论进行比较,表明了Strohal数的重要性。其中一个重要因素与Strohal有关。数字是由于流体粘度的存在而引起的声流。然后进行流的可视化研究,以深入了解堆栈对流的影响。声流表现出在叠堆两侧出现两个涡,并且这两个涡之间通过通流相互结合的特征。这表明在发展预报模型时,考虑这种涡旋和通流的重要性。改善性能的另一种方法是控制速度和压力波动之间的相位差,以及/或堆栈两端的速度。典型的技术之一是在声学驱动器和谐振管的封闭端之间安装旁路。在此基础上,采用谐振箱的旁路电路显示了提高性能的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Ozawa: "Cooling by Sound (Principles of Acoustic Refrigerator)" Ultra-Sonic Technology. 9-6. 27-31 (1997)
M.Ozawa:“声音冷却(声波冰箱原理)”超声波技术。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
國廣,賢治: "スタックを有する共鳴管内音響流の可視化" 日本伝熱シンポジウム講演論文集. (発表予定). (1998)
Kunihiro, Kenji:“带有烟囱的谐振管中声流的可视化”日本传热研讨会论文集(预定演讲)(1998 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ozawa: "Flow Visualization of Acoustic Streaming in a Resonance Tube Refrigerator" Technology Reports of Kansai University. 41. 35-44 (1999)
M.Ozawa:“谐振管冰箱中声流的流动可视化”关西大学技术报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小澤守: "音波で気体を冷却する(音響冷凍機の原理と研究の現状)" 超音波TECHNO. 9-6. 27-31 (1997)
Mamoru Ozawa:“用声波冷却气体(声学制冷机原理和研究现状)”超声波技术 9-6(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
篠木,政利: "スターリング冷凍機における再生器の熱流動特性" 日本機械学会スターリングサイクルシンポジウム講座論文集. 98-19. 29-32 (1998)
Shinoki, Masatoshi:“斯特林制冷机蓄热器的热工水力特性”,斯特林循环研讨会论文集,日本机械工程师学会 98-19 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OZAWA Mamoru其他文献

OZAWA Mamoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OZAWA Mamoru', 18)}}的其他基金

Dynamic Interaction of Combustion/Boiling Heat Transfer of Compact Steam Generator and its System Stability
紧凑型蒸汽发生器燃烧/沸腾传热的动态相互作用及其系统稳定性
  • 批准号:
    22360092
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pattern Dynamics Simulation of Boiling Two-phase Flow Dynamics
沸腾两相流动力学的模式动力学模拟
  • 批准号:
    19360104
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Two-phase Flow Characteristics under Taylor-Spiral Flow Condition
泰勒螺旋流条件下的两相流特性
  • 批准号:
    16560197
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermal-Flow Modeling of Fluidized-Bed combustor/Reactor (Real-Time Radiographic Quantitative Flow Visualizaiton of High Temperature Fluidized-Bed Model)
流化床燃烧器/反应器的热流建模(高温流化床模型的实时射线照相定量流可视化)
  • 批准号:
    11450091
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Heat Transfer in Acoustic Resonance Tube and Its Application to Small-Capacity Refrigerator.
声谐振管传热及其在小容量冰箱中的应用。
  • 批准号:
    07650270
  • 财政年份:
    1995
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了