Dynamic Processing of Visual Patterns
视觉模式的动态处理
基本信息
- 批准号:09308010
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A).
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aiming to develop new design principles for visual information processing systems of the next generation, we have concentrated our research on the active and dynamic processes in the visual system of the biological brain. We used modeling approach to uncover the mechanism of the brain and to design advanced systems for visual pattern recognition. We have performed various researches in parallel and have obtained the following results.1. Neural network model that can recognize faces from complex backgraound. It can focus attention to and segment facial components (eyes and mouth) from the recognized face.2. Neural network model that can recognize partly occluded patterns correctly.3. Neocognitron of a new version for recognizing handwritten digits in the real world. The neocognitron, which we have developed previously, is a pattern recognition system whose architecture has been suggested from the mammalian visual system. The recognition rate, which varies depending on the size of training set, was over 98% when we used 3000 characters for the training.4. New learning rule by which cells with shift-invariant receptive fields are self-organized. With this learning rule, cells similar to simple and complex cells in the primary visual cortex are generated in a network.5. Neural network model that can memorize and recall spatial maps. The model emulates a situation where a person memorizes and recalls spatial maps when he moves around in a two-dimensional space. The model memorizes fragmentary maps, but can retrieve an image covering a wide area seamlessly by a continuous chain process of recalling.6. Stereo algorithm that extracts a depth cue from interocularly unpaired points.
为了开发下一代视觉信息处理系统的新设计原则,我们集中研究了生物大脑视觉系统中的主动和动态过程。我们使用建模方法来揭示大脑的机制,并设计先进的视觉模式识别系统。我们同时进行了多项研究,并取得了以下成果.能从复杂背景中识别人脸的神经网络模型。它可以将注意力集中到识别出的人脸上并分割出人脸的组成部分(眼睛和嘴巴).能够正确识别部分遮挡模式的神经网络模型.用于识别真实的世界中的手写数字的新版本的Neocognitron。我们以前开发的新认知机是一种模式识别系统,其结构来自哺乳动物的视觉系统。识别率随训练集的大小而变化,当我们使用3000个字符进行训练时,识别率超过98%.新的学习规则,使具有平移不变感受野的细胞自组织。通过这种学习规则,在初级视觉皮层中类似于简单和复杂细胞的细胞在网络中产生。可以记忆和回忆空间地图的神经网络模型。该模型模拟了一个人在二维空间中移动时记忆和回忆空间地图的情况。该模型记忆的是零碎的地图,但可以通过连续的链式回忆过程无缝地检索覆盖广泛区域的图像。从眼间不成对点提取深度线索的立体算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masayuki Kikuchi: "Neural network model completing occluded contour"ICONIP'98 (International Conference on Neural Information Processing, Kitakyushu, Japan). 315-318 (1998)
Masayuki Kikuchi:“完成遮挡轮廓的神经网络模型”ICONIP98(神经信息处理国际会议,日本北九州)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Jose H.Saito: "Modular neocognitron to pattern recognition"SBRN'98 (V Simposio Brasileiro de Redes Neurais, Belo Horizonte-MG, Brasil). 3-8 (1998)
Jose H.Saito:“模式识别的模块化新认知器”SBRN98(V Simposio Brasileiro de Redes Neurais,贝洛奥里藏特-MG,巴西)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kunihiko Fukushima: "Self-organization of complex-like cells"ICONIP'99 (International Conference on Neural Information Processing, Perth, Australia). 1. 261-266 (1999)
Kunihiko Fukushima:“复杂细胞的自组织”ICONIP99(神经信息处理国际会议,澳大利亚珀斯)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.David Irwin: "The Industrial Electronics Handbook"CRC Press, Boca Raton, Flolida. 1686 (1997)
J.David Irwin:“工业电子手册”CRC Press,佛罗里达州博卡拉顿。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Mira: "International Work-Conference on Artificial and Natural Networks, IWANN'99, Alicante, Spain"Springer-Verlag, Berlin・Heidelberg. 865 (1999)
J.Mira:“人工和自然网络国际工作会议,IWANN99,西班牙阿利坎特”Springer-Verlag,柏林·海德堡 865 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUSHIMA Kunihiko其他文献
FUKUSHIMA Kunihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUSHIMA Kunihiko', 18)}}的其他基金
Use of Top-Down Information for Visual Information Processing
使用自上而下的信息进行视觉信息处理
- 批准号:
14380169 - 财政年份:2002
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Visual Pattern Recognition with Hierarchical Neural Networks
层次神经网络视觉模式识别研究
- 批准号:
07408005 - 财政年份:1995
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on Visual Pattern Recognition with Hierarchical Neural Networks
层次神经网络视觉模式识别研究
- 批准号:
02402035 - 财政年份:1990
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
相似海外基金
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2311766 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2311769 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2311768 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2311767 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
- 批准号:
2401245 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
A physics-driven neural network model of working memory
物理驱动的工作记忆神经网络模型
- 批准号:
570263-2022 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
An artificial neural network model of the exploration-exploitation trade off
探索-利用权衡的人工神经网络模型
- 批准号:
559572-2021 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Postgraduate Scholarships - Doctoral
Testing a deep-neural network model of cognitive map development
测试认知图开发的深度神经网络模型
- 批准号:
2725859 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Studentship
Graph Neural Network model for prediction of treatment response in DLBCL
用于预测 DLBCL 治疗反应的图神经网络模型
- 批准号:
563543-2021 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
- 批准号:
2151651 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant














{{item.name}}会员




