Accurate Above Ground Biomass Estimation using novel hierarchical datasets to train Machine Learning Models
使用新颖的分层数据集训练机器学习模型进行准确的地上生物量估算
基本信息
- 批准号:10004871
- 负责人:
- 金额:$ 199.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Small Business Research Initiative
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The world's current understanding of how much carbon is stored in the Earth's forests has been shown to be **fundamentally inaccurate**, with **serious implications for the fight against climate change.** These issues have real world impact. The world needs Nature Based Solutions projects (i.e. reforestation, forestry protection etc.) **to scale more quickly**. The Paris Agreement set a 2 degree warming scenario. We are currently on track for a 3 degree warming scenario, with all the catastrophic consequences this entails.All the various players in the Carbon Market (project developers, brokers/intermediaries and sellers) **need accurate, validated data to ensure frictionless, increased trade, proving their net zero claims.** However, **current** measurement techniques rely on **outdated and biased carbon estimations** which approximate biomass, and hence carbon, from tree diameter and height and inaccurate sampling.Machine Learning (ML) models offer the capability to accurately estimate Above Ground Biomass (AGB) from the current and imminently available raw Satellite Earth Observation (EO) data at a global scale. **However, they need accurate, well-calibrated training data** with which to train ML models with, **which is currently absent and is the focus of the project.**The **currently** available data to train models that infer AGB from satellite EO data is "inventory derived AGB data". This is gathered by manually measuring two standard parameters: tree diameter and tree height, and then estimating the tree volume and hence biomass using an allometric model which relates those tree measurements to volume, with a simple linear model. **This process does not accurately quantify biomass** and has recently been demonstrated to exhibit systematic bias (**up to 50%**) for quantifying carbon in large trees \[7\], which dominate the stores of carbon in forests.Likewise, very recent approaches using Space or Airborne LIDAR and the forthcoming ESA BIOMASS Synthetic Aperture Radar (SAR) mission, offer potential for excellent AGB inference accuracy \[6\], but are also constrained by the **low accuracy of ground measurements**.This is an exciting £1.5 million project led by Sylvera in conjunction with its partners **University College London and the NASA Jet Propulsion Lab** to push forward the state-of-the-art in Earth Observation technology. The team will capture accurate data on the carbon stored in the world's forests, with the aim of revolutionising global carbon markets, allowing them to **scale and support billions of dollars of forest restoration and planting.**
世界目前对地球森林中储存了多少碳的理解已被证明是 ** 根本不准确的 **,对应对气候变化具有 ** 严重影响。这些问题对世界产生了真实的影响。世界需要基于自然的解决方案项目(即重新造林,森林保护等)** 更快地扩展 **。《巴黎协定》设定了2摄氏度的升温情景。我们目前正处于升温3摄氏度的情况下,这将带来所有灾难性的后果。碳市场中的所有参与者(项目开发商,经纪人/中介和卖家)** 都需要准确,有效的数据,以确保无摩擦,增加贸易,证明他们的净零索赔。然而,** 当前 ** 的测量技术依赖于 ** 过时和有偏见的碳估计 **,这些估计近似于生物量,因此根据树木的直径和高度以及不准确的采样来估计碳。机器学习(ML)模型提供了根据当前和即将可用的原始卫星地球观测(EO)数据在全球范围内准确估计地面生物量(AGB)的能力。** 然而,他们需要准确、校准良好的训练数据 ** 来训练ML模型,** 这是目前缺乏的,也是项目的重点。训练从卫星EO数据推断AGB的模型的 ** 当前 ** 可用数据是“库存衍生AGB数据”。这是通过手动测量两个标准参数来收集的:树直径和树高,然后使用异速生长模型来估计树木体积,从而估计生物量,该模型将这些树木测量值与体积联系起来,并使用简单的线性模型。** 这一过程不能准确地量化生物量 **,而且最近已被证明存在系统偏差。(** 高达50%**)用于量化大树中的碳[7],这些大树主导着森林中的碳储存。同样,最近使用空间或机载激光雷达和即将到来的欧空局生物质量合成孔径雷达(SAR)使命的方法,提供了优秀的AGB推理精度的潜力\[6\],但也受到 ** 地面测量精度低 ** 的限制。这是一个令人兴奋的150万英镑的项目,由西尔维拉领导,与合作伙伴 ** 伦敦大学学院伦敦和美国宇航局喷气推进实验室 ** 合作推动地球观测技术的发展。该团队将捕捉世界森林中储存的碳的准确数据,旨在彻底改变全球碳市场,使其能够 ** 扩大规模并支持数十亿美元的森林恢复和种植。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 199.45万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 199.45万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 199.45万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: On the ground and from above: A multi-factor analysis of the direct and indirect drivers of tallgrass prairie small mammal communities
博士论文研究:地面和空中:高草草原小型哺乳动物群落直接和间接驱动因素的多因素分析
- 批准号:
2322603 - 财政年份:2023
- 资助金额:
$ 199.45万 - 项目类别:
Standard Grant
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 199.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The risk of soil contaminants on above- and below-ground urban ecosystems
土壤污染物对城市地上和地下生态系统的风险
- 批准号:
2741900 - 财政年份:2022
- 资助金额:
$ 199.45万 - 项目类别:
Studentship
Understanding how the relationship between above-ground and below-ground plant parts affects productivity in organic cultivation
了解地上和地下植物部分之间的关系如何影响有机栽培的生产力
- 批准号:
22K05891 - 财政年份:2022
- 资助金额:
$ 199.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Can we mitigate flood induced by heavy storms using forest above ground system?
我们可以利用森林地上系统减轻暴风雨引发的洪水吗?
- 批准号:
22K19871 - 财政年份:2022
- 资助金额:
$ 199.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
How do tropical trees coordinate above- and below-ground resource strategies?
热带树木如何协调地上和地下资源策略?
- 批准号:
561894-2021 - 财政年份:2021
- 资助金额:
$ 199.45万 - 项目类别:
University Undergraduate Student Research Awards
Enhanced Forest Above Ground Biomass estimation using LIDAR, Machine Learning and Earth Oberservation data
使用激光雷达、机器学习和地球观测数据增强森林地上生物量估算
- 批准号:
79486 - 财政年份:2020
- 资助金额:
$ 199.45万 - 项目类别:
Small Business Research Initiative














{{item.name}}会员




