Selenoproteins in the ER-associated protein degradation pathway
ER 相关蛋白降解途径中的硒蛋白
基本信息
- 批准号:10152599
- 负责人:
- 金额:$ 24.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseActive SitesAffectAffinityAmino AcidsBindingBinding ProteinsBiochemical ReactionCancerousCell physiologyCellsChemistryCleaved cellComplexCytoplasmDegradation PathwayDiseaseDisulfidesDrug TargetingEndoplasmic ReticulumEnergy SupplyEnergy-Generating ResourcesEnzymesEquilibriumEukaryotaExerciseFamilyHomeostasisImpairmentIn VitroIntegral Membrane ProteinIon ChannelLengthLinkLipidsMaintenanceMapsMeasurementMeasuresMembraneMembrane ProteinsModificationMolecularMonitorNerve DegenerationOxidantsOxidation-ReductionOxidoreductasePeptidesPhysiologicalPost-Translational Protein ProcessingPredispositionProcessProductionProteinsReagentReducing AgentsRoleSeleniumSelenocysteineSiteStressTransferaseWorkbasecancer therapycardiovascular healthcofactorgraspmisfolded proteinmulticatalytic endopeptidase complexmutantnew therapeutic targetp97 ATPaseprotein Kprotein complexprotein degradationprotein foldingprotein misfoldingproteostasisrecruitselenoproteinsensorstoichiometrytargeted treatmentvalosin-containing protein
项目摘要
PROJECT SUMMARY
The ER is responsible for the folding and posttranslational modification of over a third of all proteins in
eukaryotes. Impaired degradation of proteins is strongly linked to neurodegenerative and protein misfolding
diseases. Here we examine the ER-associated protein degradation (ERAD) pathway, which governs the
extraction of misfolded proteins or misassembled protein complexes from the ER's membrane and lumen and
their transport to the cytoplasm where they are degraded by the proteasome. The ERAD is targeted in cancer
treatments since cancerous cells require an increased capacity for protein folding and degradation.
Two integral membranes proteins that belong to the family of selenoproteins contribute to the ERAD
machinery: selenoprotein S (SelS) and selenoprotein K (SelK). Since all selenoproteins are enzymes SelS and
SelK are most likely catalytically active but their specific contribution to the ERAD pathway is yet unknown. We
recently discovered that SelK is able to cleave its own peptide bond, releasing a selenocysteine–containing
peptide, and thus terminating enzymatic activity. We propose that this autoproteolysis is a regulatory
mechanism responsible for SelK associations with different membrane complexes. We will characterize the
cleavage mechanism, cleavage sites and the unprecedented contribution of selenocysteine to the peptide
bond cleavage. We will then examine whether SelK protein partners affect the cleavage rate or sites and
whether truncated forms of SelK are able to bind selected protein partners.
In a related thrust, we will examine how SelK's protein partner, SelS, coordinates the recruitment of the AAA
ATPase valosin-containing protein (VCP) p97 to the membrane channel that translocates misfolded proteins
(dislocon). The cytoplasmic p97 provides the energy necessary for pulling misfolded protein out of the dislocon
and hence is central to the ERAD process. Because selenoproteins are often found to detoxify or regulate
reactive oxidative species we hypothesize that SelS not only recruits p97 but also regulates its ATPase activity
and sensitivity to oxidative modifications. We will map SelS interactions with p97 and derlin-1, a
transmembrane contributor to the dislocon. Also SelS's ability to interact with additional protein substrates
while bound to p97 or derlin-1 will be assessed.
The proposed experimental work will unveil the molecular interactions between SelS, SelK, derlin-1, and p97,
thus clarifying the steps required for complex assembly of the dislocon and its energy source, p97. In addition,
it will be clarified to what extent SelS acts -in a redox state dependent way- as sensor of oxidants and protects
p97 from damage. Together, our studies will dramatically advance our understanding of SelS's and SelK's
contribution to protein degradation and of the role of their selenocysteine in complex formation and in
enzymatic reactions. Because of the specialized chemistry associated with selenocysteine, SelS and SelK
present themselves as unique drug targets whose selenium based reactivity can be targeted.
项目总结
内质网负责所有蛋白质中超过三分之一的折叠和翻译后修饰
真核生物。蛋白质降解受损与神经退行性变和蛋白质错误折叠密切相关
疾病。在这里,我们研究了内质网相关蛋白降解(ERAD)途径,它调控着
从内质网的膜和腔中提取错误折叠的蛋白质或错误组装的蛋白质复合体
它们被运输到细胞质,在那里它们被蛋白酶体降解。ERAD的靶向是癌症
由于癌细胞需要更大的蛋白质折叠和降解能力,因此需要进行更多的治疗。
属于硒蛋白家族的两种完整的膜蛋白参与了ERAD
机制:硒蛋白S(SELS)和硒蛋白K(SELK)。因为所有的硒蛋白都是酶,Sels和
SELK很可能具有催化活性,但它们对ERAD途径的具体贡献尚不清楚。我们
最近发现SELK能够裂解自己的肽键,释放一种含硒半胱氨酸
多肽,从而终止酶的活性。我们认为这种自身蛋白分解是一种调节性的
SELK与不同膜复合体结合的机理。我们将描述
裂解机制、裂解位点和硒半胱氨酸对多肽的前所未有的贡献
键断裂。然后我们将研究SELK蛋白伙伴是否影响卵裂率或位点和
截短形式的SELK是否能够与选定的蛋白质伙伴结合。
在一个相关的重点中,我们将研究Selk的蛋白质合作伙伴SELS如何协调AAA的招募
含Valosin蛋白(VCP)的ATPase p97转位错折叠蛋白的膜通道
(Dislocon)。细胞质p97提供了将错误折叠的蛋白质从错位中拉出所需的能量。
因此,它是ERAD进程的核心。因为硒蛋白经常被发现可以解毒或调节
我们假设SELS不仅招募p97,而且还调节其ATPase活性
以及对氧化修饰的敏感性。我们将映射SEL与p97和Derlin-1的相互作用,a
错位蛋白的跨膜贡献者。此外,SELS与额外蛋白质底物相互作用的能力
而结合p97或DERLIN-1将被评估。
这项拟议的实验工作将揭示SELS、SELK、Derlin-1和p97之间的分子相互作用,
从而阐明了错位粒子及其能源P97的复杂组装所需的步骤。此外,
我们将阐明SELS在多大程度上以氧化还原状态依赖的方式作为氧化剂的传感器和保护作用。
P97免受伤害。我们的研究将极大地促进我们对赛尔斯和赛尔克的理解
对蛋白质降解的贡献以及它们的硒半胱氨酸在络合物形成和
酶促反应。由于与硒半胱氨酸、SELS和SELK有关的特殊化学物质
将自己作为独特的药物靶点,其基于硒的反应性可以被靶向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharon Rozovsky其他文献
Sharon Rozovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharon Rozovsky', 18)}}的其他基金
Selenoproteins in the ER-associated protein degradation pathway
ER 相关蛋白降解途径中的硒蛋白
- 批准号:
9690137 - 财政年份:2017
- 资助金额:
$ 24.27万 - 项目类别:
STUDIES OF THE TRANSMEMBRANE SELENOPROTEIN K AND ITS ROLE IN OXIDATIVE DEFENSE
跨膜硒蛋白 K 及其氧化防御作用的研究
- 批准号:
8364948 - 财政年份:2011
- 资助金额:
$ 24.27万 - 项目类别:
LANOSTEROL BIOSYNTHESIS IN THE MEMBRANE ENVIRONMENT
膜环境中的羊毛甾醇生物合成
- 批准号:
7959547 - 财政年份:2009
- 资助金额:
$ 24.27万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 24.27万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 24.27万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 24.27万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 24.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 24.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 24.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 24.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 24.27万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 24.27万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 24.27万 - 项目类别:
Discovery Grants Program - Individual