A cellular osmotic pressure sensor
细胞渗透压传感器
基本信息
- 批准号:10153828
- 负责人:
- 金额:$ 23.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAreaAutomobile DrivingBehaviorBindingBinding SitesBiochemicalBiologicalBiomedical ResearchCell VolumesCell WallCell membraneCell modelCellsCommunitiesCrowdingDNADNA BindingDNA SequenceDataDependenceDevelopmentDiffuseElementsEnhancersEnvironmentEquipmentExposure toFutureGasesGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionHydration statusImageImpairmentIn SituInvestigationKnowledgeLaboratoriesLaboratory ResearchLifeMeasurableMeasurementMeasuresMechanical StressMechanicsMembraneMetabolicModelingMolecularOrganismOsmolalitiesOsmoregulationOsmotic PressurePermeabilityPhysical shapePhysiologicalPlantsProcessProkaryotic CellsProliferatingPropertyProteinsPublishingReagentRecoveryRegulationReporterReporter GenesReportingResearchResearch PersonnelRisk ManagementStressSwellingSystemTechnologyTestingTimeTransactivationTranslatingVariantVesicleWaterWater MovementsYeastsbasebiological adaptation to stresscell typecofactorcostdesignenvironmental stressorexperimental studyhuman diseasein vivoinnovationinsightinstrumentationinterestminiaturizemutantnovelnovel strategiespressure sensorpromoterratiometricresponsesensorsolutetooltranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
Fluctuations in osmotic pressure represent a critical challenge of the cellular environment. Differences in solution
composition across plasma membranes cause bulk water movement in the direction of decreasing water activity,
driving cell shrinkage or swelling. Cells dynamically respond to such stresses with osmo-regulatory mechanisms
aimed at maintaining volume (tonic) control. Depending on the cell’s tolerance for mechanical stress, the adapted
state may only partially correct the underlying osmotic imbalance. As a result, variations in intracellular water
activity also perturb osmotically sensitive interactions that involve changes in molecular hydration. Osmotic
stress arises from exposure to non-isotonic environments or rapid metabolic turnover in proliferating cells, and
an increasing number of human diseases are connected to persistent osmotic stress. Osmotic pressure is
therefore a parameter of interest to many areas of biomedical research. Current technologies cannot directly
access osmotic pressure inside the cell. They infer osmotic pressure from functional or other correlates such as
cell volume, gas vesicles, gene expression or macromolecular crowding. These indirect metrics, which are
particular to different cell types but not specific to osmotic disturbances, limit their general utility. Direct access
to intracellular osmotic pressure would enable investigators to establish a standard metric for evaluating osmotic
responses, and compare different cellular systems or stress conditions. To address this unmet need, this
proposal is aimed at validating a novel solution to directly report intracellular osmotic pressure using common
imaging and flow cytometric instrumentation. Our approach is based on osmotically sensitive transcription
factors, which bind high- and low-affinity DNA target sequences with distinct dependence on osmotic pressure.
We postulate that differential transactivation of reporter genes by osmotically sensitive transcription factors at
high- and low-affinity DNA enhancers could yield a direct ratiometric readout of the intracellular osmotic pressure.
To validate this concept, we will use as initial design the transcription factor PU.1, whose osmotic sensitivities
are characterized. We will 1) construct fluorescent protein reporter systems that are differentially responsive to
osmotic pressure. 2) We will validate their operational basis using osmotically impaired mutant factors and
calibrate the osmotic pressure readout in live cells. 3) To maximize the addressable range of organisms, we will
generalize our design to remove the requirement for factor-specific transcriptional machinery. 4) Finally, we will
integrate a time-sensitive feature into the sensor by controlling metabolic reporter turnover. An emphasis in our
approach is a modular design that will accept a wide range of alternate transcription factors, promoters, and
reporter moieties. This feature greatly enhances risk management. If successful, these innovations will lead to a
direct and non-invasive approach for directly determining the latency, rate, and completeness of hypo- and
hyperosmotic stress response by cells from all kingdoms of life.
项目总结/摘要
渗透压的波动代表了细胞环境的关键挑战。解决方案的差异
跨质膜的成分导致大量水沿水活性降低的方向移动,
促使细胞收缩或膨胀。细胞动态地响应这种压力与非调节机制
旨在保持音量(紧张)控制。根据细胞对机械应力的耐受性,
国家只能部分纠正潜在的渗透压失衡。结果,细胞内水的变化
活性还干扰涉及分子水合变化的敏感相互作用。渗透
应激产生于暴露于非等渗环境或增殖细胞中的快速代谢周转,
越来越多的人类疾病与持续的渗透压有关。渗透压
因此是生物医学研究的许多领域感兴趣的参数。目前的技术不能直接
获取细胞内的渗透压。他们从功能性或其他相关因素,如
细胞体积、气泡、基因表达或大分子拥挤。这些间接指标,
特别是对于不同的细胞类型,但不特异于渗透干扰,限制了它们的一般用途。直接访问
将使研究人员能够建立一个标准的指标,用于评估渗透压
反应,并比较不同的细胞系统或压力条件。为了满足这一未满足的需求,
一项提案旨在验证一种新的解决方案,以直接报告细胞内渗透压,
成像和流式细胞仪。我们的方法是基于免疫敏感的转录
这些因子结合高亲和力和低亲和力DNA靶序列,对渗透压具有明显的依赖性。
我们推测,在转录水平上,敏感的转录因子对报告基因的差异反式激活作用可能是由于转录水平的不同而引起的。
高亲和力和低亲和力DNA增强子可以产生细胞内渗透压的直接比率读数。
为了验证这一概念,我们将使用转录因子PU.1作为初始设计,其渗透敏感性
是有特点的。我们将1)构建荧光蛋白报告系统,
渗透压2)我们将使用免疫受损的突变因子来验证它们的操作基础,
校准活细胞中的渗透压读数。3)为了最大限度地扩大生物体的可寻址范围,我们将
推广我们的设计,以消除对因子特异性转录机制的要求。4)最后我们将
通过控制代谢报告子转换将时间敏感特征集成到传感器中。我们的重点是
方法是一种模块化设计,将接受广泛的替代转录因子,启动子,
报告分子部分。该功能极大地增强了风险管理。如果成功,这些创新将导致一个
直接和非侵入性的方法,用于直接确定潜伏期,速率和完整性的低,
高渗应激反应的细胞从所有王国的生活。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Non-continuum Nature of Eukaryotic Transcriptional Regulation.
- DOI:10.1007/5584_2021_618
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Poon GMK
- 通讯作者:Poon GMK
Dissecting Dynamic and Hydration Contributions to Sequence-Dependent DNA Minor Groove Recognition.
剖析动态和水合对序列依赖性 DNA 小沟识别的贡献。
- DOI:10.1016/j.bpj.2020.08.013
- 发表时间:2020
- 期刊:
- 影响因子:3.4
- 作者:Ha,VanLT;Erlitzki,Noa;Farahat,AbdelbassetA;Kumar,Arvind;Boykin,DavidW;Poon,GregoryMK
- 通讯作者:Poon,GregoryMK
Dissecting Knowledge, Guessing, and Blunder in Multiple Choice Assessments
剖析多项选择评估中的知识、猜测和错误
- DOI:10.1080/08957347.2023.2172017
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Abu-Ghazalah, Rashid M.;Dubins, David N.;Poon, Gregory M.K.
- 通讯作者:Poon, Gregory M.K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Man Kai Poon其他文献
Gregory Man Kai Poon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Man Kai Poon', 18)}}的其他基金
Direct chemical control of the hematopoietic master transcription factor PU.1
造血主转录因子 PU.1 的直接化学控制
- 批准号:
10540346 - 财政年份:2021
- 资助金额:
$ 23.39万 - 项目类别:
Direct chemical control of the hematopoietic master transcription factor PU.1
造血主转录因子 PU.1 的直接化学控制
- 批准号:
10322390 - 财政年份:2021
- 资助金额:
$ 23.39万 - 项目类别:
Direct activation of hematopoietic transcription factors
直接激活造血转录因子
- 批准号:
8947574 - 财政年份:2015
- 资助金额:
$ 23.39万 - 项目类别:
Osmotic responsiveness of the master immune regulator PU.1
主免疫调节剂 PU.1 的渗透反应性
- 批准号:
8770311 - 财政年份:2014
- 资助金额:
$ 23.39万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 23.39万 - 项目类别:
Continuing Grant