High-throughput Label-free Biosensor Platform for Rapid Detection of Antigen-specific T Cells with Single Cell Resolution

高通量无标记生物传感器平台,用于以单细胞分辨率快速检测抗原特异性 T 细胞

基本信息

  • 批准号:
    10156407
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract Immunotherapy has become a rapidly growing segment of cancer treatment with impressive success across a spectrum of malignancies including melanoma, colorectal, and non-small cell lung cancers. Notwithstanding these advances, a significant fraction of patients fails to respond to immunotherapy and suffers from serious adverse side effects. While peptide-loaded major histocompatibility complex (pMHC) tetrameric structures allow the detection of antigen-specific T cells, a few antigen specificities can be detected in parallel because of limitations on the number of available fluorescent or metal labels. On the other hand, thousands of cells are needed for the workflow. Improved prognostic methods to monitor the specificity and functional behavior of tumor antigen-specific cytotoxic T cells is greatly needed to enhance the overall effectiveness of a range of immunotherapies, especially adoptive cell therapy (ACT), and provide better outcomes for cancer patients. This project develops a first-of-its-kind biosensor platform that enables the rapid and parallel detection of antigen- specific T cells. The proposed lab-on-chip technology allows detection and characterization at a single-cell level without requiring the use of labeling, complicated operational controls, or expensive equipment. As a result, the technology can be implemented in point-of-care settings and rapidly provide medical professionals with critical information, such as the ideal timing of future injected doses and any off-target effects. The key innovations behind the proposed technology include its high-throughput biosensor architecture, the ability to scale-up manufacturing using existing silicon foundries, label-free cell detection, simple operation and product design, and the implementation of novel algorithms of robust, real-time data analysis. Moreover, the commercialization of the proposed technology is facilitated by a mature semiconductor industry to achieve this high level of multiplexing in a small form factor. The proposed project focuses on engineering and optimization of the proposed biosensor platform and iterative development using six well-characterized tumor-antigens that are frequently recognized in melanoma patients. Peripheral blood mononuclear cells (PBMCs) from melanoma patients and from healthy donors will be used for analysis and technology validation. Successful completion of the project will provide a laboratory proof-of- concept, allowing the technology to move forward to a clinical setting where it can be used to monitor patients’ ongoing responses to immunotherapy, in specific checkpoint blockade and/or adoptive cell therapy. The tumor profiling market is projected to grow to about $12B by 2024, with the largest sector being immunoassays. If successful, the proposed technology will be a groundbreaking development in the cancer immunology toolbox, especially for early ex vivo identification of resistant tumor cell subpopulations, and help advance the effectiveness of cancer treatment for millions of people around the world.
项目摘要/摘要 免疫疗法已经成为癌症治疗中一个迅速增长的领域,在整个 包括黑色素瘤、结直肠癌和非小细胞肺癌在内的各种恶性肿瘤。尽管如此 这些进展,相当一部分患者对免疫治疗无效,并患有严重的 不良副作用。而多肽负载的主要组织相容性复合体(PMHC)四聚体结构允许 对于抗原特异性T细胞的检测,一些抗原特异性可以并行检测,因为 对可用的荧光或金属标签数量的限制。另一方面,成千上万的细胞 工作流程所需的。用改进的预后方法监测肿瘤的特异性和功能行为 抗原特异性细胞毒性T细胞是非常需要的,以增强一系列 免疫疗法,特别是过继细胞疗法(ACT),并为癌症患者提供更好的结果。 该项目开发了第一个此类生物传感器平台,使快速和并行检测抗原- 特定的T细胞。建议的芯片实验室技术允许在单细胞水平上进行检测和表征 不需要使用标签、复杂的操作控制或昂贵的设备。因此, 技术可以在护理点环境中实施,并迅速为医疗专业人员提供关键的 信息,如未来注射剂量的理想时间和任何偏离目标的影响。关键创新 该提议背后的技术包括其高通量生物传感器体系结构、放大能力 利用现有的硅铸造厂制造,无标签电池检测,操作和产品设计简单, 以及稳健、实时数据分析的新算法的实现。此外,商业化 成熟的半导体行业推动了拟议技术的发展,以实现如此高水平的 在小巧的外形中实现多路复用。 拟议的项目侧重于拟议的生物传感器平台的工程设计和优化以及迭代 使用黑色素瘤患者经常识别的六种特征良好的肿瘤抗原进行开发。 来自黑色素瘤患者和健康捐赠者的外周血单核细胞(PBMC)将用于 分析和技术验证。该项目的成功完成将提供一个实验室证明- 概念,使这项技术向前发展到临床环境中,可以用来监测患者的 对免疫治疗的持续反应,在特定检查点封锁和/或过继细胞治疗中。 到2024年,肿瘤特征分析市场预计将增长到约120亿美元,其中最大的领域是 免疫分析。如果成功,这项拟议的技术将是癌症领域的一项突破性进展 免疫学工具箱,特别是用于早期体外识别耐药肿瘤细胞亚群的帮助 为全世界数百万人提高癌症治疗的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farshid Ghasemi其他文献

Farshid Ghasemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farshid Ghasemi', 18)}}的其他基金

Accurate, High-Throughput, and Affordable Nucleic Acid Sequencing Technology
准确、高通量、经济实惠的核酸测序技术
  • 批准号:
    10258663
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了