Neural circuit mechanisms for goal-oriented behavior in novel environments

新环境中目标导向行为的神经回路机制

基本信息

  • 批准号:
    10158514
  • 负责人:
  • 金额:
    $ 39.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-04 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary Humans, like other animals, regularly modify behavior based on environmental context. This relies on the ability to discriminate between environments and develop strategies for maximizing rewards (or minimizing punishment) in a context-specific manner. A breakdown in this ability to change behavior depending on environment is prominent in dementia and Alzheimer's disease. Our central objective is to identify the specific neuronal circuits and activity dynamics required for acquiring goal-oriented behaviors in novel environments. We focus on the hippocampus, a region critical for discriminating between environments and necessary for encoding certain types of behavior. Our central hypothesis is that cell-type specific inhibitory circuits regulate the pyramidal network dynamics that encode goal-oriented behavior. Specifically, we use in vivo two-photon calcium imaging to visualize the activity of genetically-defined subsets of hippocampal CA1 neurons as mice complete goal-oriented tasks in virtual reality (VR) environments, using water rewards for motivation (Arriaga and Han, J. Neurosci., 2017). With this system, we recently found that both parvalbumin (PV)- and somatostatin (SOM)-expressing inhibitory interneurons are strongly suppressed in novel environments, with gradual recovery of activity over days as task performance increases (Arriaga and Han, eLife, 2019). In Aim 1, we will use a combination of imaging, behavior, and correlative functional and immunolabeling microscopy to define putative disinhibitory VIP+ neurons activated in novel environments. In Aim 2, we will define the kinetics of excitatory network reorganization in novel environments during goal-oriented behavior. If inhibitory activity plays a major role in controlling the encoding of information in excitatory networks, we should see similar kinetics in activity dynamics across the two networks, i.e. slow stabilization over days. We will track individual pyramidal neurons during task-engaged behavior in novel environments to define activity dynamics of the excitatory network. To facilitate this goal, we have developed a neural network-based decoder that tracks the contribution of individual neurons to population position coding across days. In Aim 3, we will determine the necessity of inhibition suppression and disinhibition activation for goal-oriented behavior and pyramidal network reconfiguration. We will test this by chemogenetically restoring inhibitory SOM+ and PV+ interneuron activity (separately), or silencing PV+ neurons, in novel environments and compare task performance with control mice. To illuminate possible circuit mechanisms downstream of inhibitory activity manipulation, we will image excitatory neuron activity to evaluate alterations in network reorganization as defined in Aim 2. This contribution is significant because it promises to link cell type-specific inhibitory activity with novelty-induced, pyramidal network reorganization and goal-oriented behavior in vivo. These studies may lead to new circuit- targeted approaches to enhance network function for the treatment of behavioral impairment associated with many cognitive disorders and neurodegenerative diseases.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Bing Han其他文献

Edward Bing Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Bing Han', 18)}}的其他基金

Neural circuit mechanisms for goal-oriented behavior in novel environments
新环境中目标导向行为的神经回路机制
  • 批准号:
    10034846
  • 财政年份:
    2020
  • 资助金额:
    $ 39.38万
  • 项目类别:
Neural circuit mechanisms for goal-oriented behavior in novel environments
新环境中目标导向行为的神经回路机制
  • 批准号:
    10360546
  • 财政年份:
    2020
  • 资助金额:
    $ 39.38万
  • 项目类别:
Neural circuit mechanisms for goal-oriented behavior in novel environments
新环境中目标导向行为的神经回路机制
  • 批准号:
    10574533
  • 财政年份:
    2020
  • 资助金额:
    $ 39.38万
  • 项目类别:
In vivo imaging of dynamic structural plasticity driving morphine conditioned place preference
驱动吗啡条件位置偏好的动态结构可塑性的体内成像
  • 批准号:
    9282579
  • 财政年份:
    2016
  • 资助金额:
    $ 39.38万
  • 项目类别:

相似国自然基金

新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
  • 批准号:
    81000622
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
  • 批准号:
    31060293
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
  • 批准号:
    30960334
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
  • 批准号:
    10657993
  • 财政年份:
    2023
  • 资助金额:
    $ 39.38万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10381163
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10531959
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10700991
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10518582
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10672973
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10585925
  • 财政年份:
    2022
  • 资助金额:
    $ 39.38万
  • 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
  • 批准号:
    10180000
  • 财政年份:
    2021
  • 资助金额:
    $ 39.38万
  • 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
  • 批准号:
    10049426
  • 财政年份:
    2021
  • 资助金额:
    $ 39.38万
  • 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10295809
  • 财政年份:
    2021
  • 资助金额:
    $ 39.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了