The molecular architecture and mechanism of the Proton Activated Chloride (PAC) Channel.
质子活化氯化物 (PAC) 通道的分子结构和机制。
基本信息
- 批准号:10157439
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-28 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAcidsAddressAmino AcidsAnionsArchitectureBiochemicalBiological AssayBiological ProcessBrainC-terminalCell DeathCellsCerebral IschemiaCharacteristicsChloride ChannelsChloride IonChloridesCodeCognitiveCryoelectron MicroscopyDevelopmentDrug TargetingElectrophysiology (science)EnvironmentEventFamilyFoundationsFutureGenesGoalsHome environmentHomeostasisInstitutesInvestigationIon ChannelIon Channel GatingIonsIschemiaIschemic Brain InjuryIschemic StrokeKnock-outKnowledgeLigandsLinkMediatingMembrane ProteinsMentorshipModelingMolecularMutagenesisMutateMutationN-terminalNervous system structureNeuraxisNeuronal InjuryNeuronsNeurosciencesPacific NorthwestPhysiologicalPhysiological ProcessesPhysiologyPlayPreventionPropertyProtein BiochemistryProtonsResolutionRestRoleScientistSenior ScientistShapesSodiumStrokeStructureStructure-Activity RelationshipSwellingTherapeutic AgentsTissuesTranslatingTraumatic Brain Injuryalpha helixbasebiophysical propertiesbiophysical toolsbrain tissuecareercell growth regulationchemical propertydesensitizationdesignexperimental studyextracellulargraduate studenthuman tissueinsightknowledge basemillisecondmouse modelmutantneuron lossnovelnovel therapeuticsparticlephysical propertyprotein foldingresponseskillsstoichiometrystroke survivorstructural biologystructured datatherapeutic developmenttherapeutic target
项目摘要
Project Summary
Ischemic strokes can cause long-term cognitive damage, leading to reduced mobility in nearly half of
stroke survivors. Brain tissue damage that occurs during and preceding an ischemic event is often largely in part
due to severe local tissue acidosis. While the molecular mechanism of how acidosis leads to tissue damage is
largely unknown, proton-gated ion channels are thought to play a role. A novel proton-gated chloride channel
has been recently identified as the previously uncharacterized gene, TMEM206, now commonly referred to as
the Proton-Activated Chloride (PAC) Channel. While recent studies have implicated PAC in acid-induced cell
death, there exists no molecular justification of the channel’s proton-activated chloride currents. This proposal
will integrate electrophysiological, biochemical, and high-resolution structural experiments to elucidate the
structure-based mechanisms that govern the function of PAC. In support of this goal, I will first obtain the high-
resolution structures of PAC’s resting and active functional state using single particle cryo-electron microscopy
(Cryo-EM). These structures will provide fundamental insights into the architecture, stoichiometry, and unique
protein folding of PAC. This information will also expand our knowledge surrounding the physical and chemical
properties of proton-gated ion channels, as well as broadly inform the structure/function relationship of ion
channels. I will then ascertain the molecular underpinnings of PAC’s pH-dependent mechanism and pore
properties by probing PAC’s function using structure-directed mutagenesis and electrophysiological
experiments. These experiments will establish a link between the molecular architecture and physiology of PAC.
Ultimately, this proposal will define structure-based, biochemical mechanisms for PAC’s function, which will lay
the foundation for future studies and may inform the development of therapeutic agents to mitigate neuronal
damage in ischemic events.
As a neuroscience graduate student whose goal is to become an independent academic scientist that
will study the structure/function of ligand-gated ion channels of the nervous system, this project will directly
expand my knowledge base and technical skillset in ion channels, membrane protein biochemistry,
electrophysiology, and cryo-EM. The study into the molecular architecture and mechanism of PAC will be
pursued under the mentorship of Dr. Eric Gouaux, an expert in ligand-gated ion channels and leader in
membrane protein structural biology. Dr. Gouaux is a senior scientist at the Vollum Institute at OHSU, an
electrophysiology powerhouse that is home to one of three national centers for Cryo-EM, Pacific Northwest
Center for Cryo-EM (PNCC). Taken together, the project will not only illuminate critical insights into a novel
proton-activated channel, but will also provide me with the necessary knowledge, biophysical tool-kit, and
professional skills I need to achieve my long-term career goal.
项目摘要
缺血性中风会导致长期的认知损害,导致近一半的人行动不便
中风幸存者。在缺血事件期间和之前发生的脑组织损伤通常是部分
由于局部组织严重酸中毒。而酸中毒如何导致组织损伤的分子机制是
人们认为,质子门控离子通道在其中发挥了作用,这一点在很大程度上不为人知。一种新型的质子门控氯离子通道
最近被确定为以前未描述的基因TMEM206,现在通常被称为
质子活化氯(PAC)通道。虽然最近的研究表明PAC与酸诱导的细胞有关
死亡,不存在该通道的质子激活的氯电流的分子理由。这项建议
将结合电生理、生化和高分辨率结构实验来阐明
管理政治行动委员会职能的基于结构的机制。为了支持这一目标,我将首先获得-
PAC静息和活性功能状态的单粒子冷冻电子显微镜分辨结构
(冷冻-EM)。这些结构将提供对体系结构、化学计量和独一无二的基本见解
PAC的蛋白质折叠。这些信息还将扩大我们对物理和化学方面的知识
质子门控离子通道的性质,以及广泛地告知离子的结构/功能关系
频道。然后我将确定PAC的pH依赖机制和毛孔的分子基础
用结构定向突变和电生理方法研究PAC的功能
实验。这些实验将在PAC的分子结构和生理之间建立联系。
最终,这项提议将为PAC的功能定义基于结构的生化机制,这将为
为未来的研究奠定基础,并可能为治疗药物的开发提供信息,以减轻神经元
在缺血事件中的损害。
作为一名神经科学研究生,他的目标是成为一名独立的学术科学家
将研究神经系统配体门控离子通道的结构/功能,该项目将直接
拓展我在离子通道、膜蛋白生物化学、
电生理学和冷冻电磁场。对PAC的分子结构和作用机理的研究将是
在Eric Gouaux博士的指导下进行研究,他是配体门控离子通道方面的专家,也是
膜蛋白结构生物学。古奥博士是俄亥俄州立大学沃勒姆研究所的资深科学家。
太平洋西北部三个国家冷冻-EM中心之一的电生理学中心
冷冻-EM中心(PNCC)。综上所述,该项目不仅将阐明对一部小说的批判性见解
质子激活的通道,但也将为我提供必要的知识、生物物理工具包和
我需要专业技能来实现我的长期职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Makayla Freitas其他文献
Makayla Freitas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Makayla Freitas', 18)}}的其他基金
The molecular architecture and mechanism of the Proton Activated Chloride (PAC) Channel.
质子活化氯化物 (PAC) 通道的分子结构和机制。
- 批准号:
10311483 - 财政年份:2020
- 资助金额:
$ 4.35万 - 项目类别:
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:














{{item.name}}会员




