Algorithmic identification of binding specificity mechanisms in proteins
蛋白质结合特异性机制的算法识别
基本信息
- 批准号:10164894
- 负责人:
- 金额:$ 10.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmino AcidsArtificial IntelligenceBenchmarkingBindingBinding ProteinsBinding SitesBiochemicalBiophysical ProcessBiophysicsChargeClinicalCollaborationsComplexComputer softwareComputing MethodologiesDevelopmentDiagnosisDiseaseDockingDrug TargetingElectrostaticsElementsEnglish LanguageEnvironmentEvaluationExhibitsFeedbackHIV ProteaseHot SpotHumanHydrogen BondingHydrophobicityImmuneIndividualInfluentialsLaboratoriesLettersLigand BindingLigandsLinkLiteratureMajor Histocompatibility ComplexMapsMeasuresMechanicsMethodologyMethodsMolecularMolecular ConformationMolecular StructureMutationNicotinic ReceptorsOutcomeOutputPatientsPeer ReviewPeptide HydrolasesPopulationPotential EnergyPrecision therapeuticsProcessPropertyProtein FamilyProtein IsoformsProteinsResearchResolutionRibosomesRicinRoleSerine ProteaseShapesSiteSpecificityStructural BiologistStructural ModelsStructureTechniquesTestingTextToxinTweensUniversitiesValidationVariantVisualbaseblindhuman-in-the-loophydropathyinhibitor/antagonistinsightmutantnovelpersonalized diagnosticsprecision medicinepreferenceprotein structureprototypereceptorsimulationsoftware developmentstructural biologytherapy developmenttooltumor
项目摘要
Project Summary
Variations in protein binding preferences are a critical barrier to the precision treatment of disease. When high
resolution structures of a protein are available, and many isoforms of the protein have been connected to dif-
fering binding preferences, it is possible in principle to model the structures of all isoforms and discover the
mechanisms that cause variations in binding preferences. Unfortunately, this discovery process depends on
human expertise for examining molecular structure, and given that hundreds of isoforms may exist, a human
would be overwhelmed to objectively examine many similar isoforms. To fill this gap, this project will (A1) de-
velop software that identifies structural mechanisms that cause differential binding preferences, categorizes
similar structural mechanisms, and explains the mechanisms in English. The second aim of this project (A2) is
to validate the software at a large scale on families of proteins that exhibit a variety of well-examined binding
preferences, and through blind predictions with experimental collaborators.
Our approach involves creating software that mimics the visual reasoning techniques employed by structural
biologists when examining molecular structures. Not only are these techniques responsible for most major dis-
coveries in structural biology, but they are also straightforward to understand by non-computational research-
ers. This property will enable our software to immediately integrate into existing workflows at labs that do not
focus on computational methods. This property also contrasts from existing methods, which generally output
structural models, potential energies, p-values and structural scores which are difficult for non-experts to un-
derstand or incorporate into their research. Often, an expert in biophysics is required to interpret the outputs so
that they can be operationalized in laboratory environments.
In preliminary results, our methods have already identified molecular mechanisms that govern specificity in
several families of proteins. Verification against peer-reviewed experimentation has proven the preliminary
results correct in almost all cases. Our methods have also been applied to make a blind prediction of binding
mechanisms in the ricin toxin, which binds to and damages the human ribosome. With experimental collabo-
rators, we showed that our methods correctly identified and predicted the roles of several amino acids with a
hitherto unknown role in recognizing the ribosome. Using our methodological approach and our rigorous valida-
tion strategy, this project will produce a highly validated, usable software package that will bridge a critical gap
in the development of precision therapies and diagnostics.
项目摘要
蛋白质结合偏好的变化是疾病精确治疗的关键障碍。当高时
蛋白质的分辨结构是可用的,并且蛋白质的许多异构体已经连接到不同的。
根据结合偏好,原则上有可能对所有异构体的结构进行建模,并发现
导致绑定偏好发生变化的机制。不幸的是,这一发现过程取决于
人类研究分子结构的专业知识,并考虑到可能存在数百种异构体,人类
会不知所措地客观地研究许多类似的异构体。为了填补这一空白,该项目将(A1)减少
识别导致不同绑定偏好的结构机制的FELE软件,对
类似的结构机制,并用英语解释了这些机制。本项目(A2)的第二个目标是
要在显示各种经过充分检查的结合的蛋白质家族上大规模验证该软件
偏好,以及通过对实验合作者的盲目预测。
我们的方法包括创建模仿Structure所使用的可视化推理技术的软件
生物学家在研究分子结构时。这些技术不仅要对大多数主要的疾病负责,
结构生物学中的发现,但通过非计算研究也很容易理解-
艾尔斯。这一特性将使我们的软件能够立即集成到实验室的现有工作流中,而不是
专注于计算方法。此属性还与现有方法形成对比,现有方法通常输出
非专家难以确定的结构模型、势能、p值和结构分数。
理解或纳入他们的研究。通常,生物物理学专家需要这样解释输出
它们可以在实验室环境中运行。
在初步结果中,我们的方法已经确定了控制特异性的分子机制。
几个蛋白质家族。对同行评议实验的验证已经证明了初步的
结果几乎在所有情况下都是正确的。我们的方法也被应用于对结合的盲目预测
蓖麻毒素与人类核糖体结合并损伤的机制。有了实验性的可卡因-
,我们证明了我们的方法正确地识别和预测了几种氨基酸的作用。
到目前为止还不知道核糖体在识别中的作用。使用我们的方法和严格的验证-
战略,这个项目将产生一个高度验证的、可用的软件包,将弥补一个关键的差距
在精密疗法和诊断学的发展中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Yuan Chen其他文献
Brian Yuan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Yuan Chen', 18)}}的其他基金
Algorithmic identification of binding specificity mechanisms in proteins
蛋白质结合特异性机制的算法识别
- 批准号:
10251944 - 财政年份:2019
- 资助金额:
$ 10.04万 - 项目类别:
Algorithmic identification of binding specificity mechanisms in proteins
蛋白质结合特异性机制的算法识别
- 批准号:
10021688 - 财政年份:2019
- 资助金额:
$ 10.04万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant