What comes next? Engaging stakeholders in governance of participant data and relationships during the sunset of large genomic medicine research initiatives
接下来是什么?
基本信息
- 批准号:10162151
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAreaAwardB-LymphocytesBiological AssayCaringCell LineCell modelCellsChild HealthCollaborationsCommittee MembershipComputational algorithmComputerized Medical RecordConsentCountryDataData AnalysesDetectionDevelopmentDiagnosisDiagnosticDiseaseEducationEligibility DeterminationEnsureEvaluationFDA approvedFamilyFibroblastsGene SilencingGenerationsGenetic CounselingGenomic medicineGenomicsGoalsGraphHealthcareHospitalsHumanInternationalInvestigationInvestmentsLeadershipLibrariesLiteratureMachine LearningMedicalMedicineMetagenomicsMethodsMissionModelingMultiomic DataNetwork-basedOntologyOrganismOrganoidsParticipantPatient CarePatientsPharmaceutical PreparationsPhasePhenotypePhysiciansPlayPolicy MakerPrincipal InvestigatorProceduresProcessProtocols documentationPublicationsReagentRecording of previous eventsResearchResourcesRoboticsRoleScientistSiteStandardizationStructureSystemT-LymphocyteTechnologyTestingTherapeuticTimeTissuesTrainingTranslational ResearchUnderserved PopulationUnited States National Institutes of HealthUniversitiesVariantVisitaccurate diagnosisbaseclinical practiceclinical research sitecohortdata integrationdeep learningdrug discoveryexperiencefollow-upgenome-widegenomic datahigh-throughput drug screeningimprovedinduced pluripotent stem cellinnovationinsertion/deletion mutationmeetingsmetabolomicsmultiple omicsnext generationnovelnovel strategiesnovel therapeuticsoperationoutreachpatient outreachphenotypic datapreservationprogramsreference genomerelating to nervous systemresearch clinical testingsample collectionscreeningsmall molecule librariessocioeconomicsstem cell biologysuccesssupport networktechnology developmenttooltranscriptome sequencingvariant detectionvirtual screening
项目摘要
Abstract
The Undiagnosed Diseases Network (UDN) has increased access for patients with undiagnosed diseases to
the nation’s leading clinicians and scientists. Phase II of the Network will facilitate the transition of UDN efforts
toward sustainability, through the expansion of clinical sites, refinement of methods, and integration with
regular clinical practice. Here, we propose a program of study that will (1) facilitate timely, accurate diagnosis
of patients with undiagnosed diseases; (2) improve diagnostic rates through novel approaches to data analysis
and integration; and (3) explore underlying mechanisms of disease to accelerate therapeutic drug discovery. In
Aim 1, we propose to evaluate patients referred to the UDN through a protocol that includes pre-visit chart
review and genetic counseling followed by an individualized visit during which standardized phenotypic and
environmental data are collected. Biosamples facilitate genomic, multi-omic, and cellular evaluation of disease.
Expansion of fibroblasts and, in selected cases, generation of induced Pluripotent Stem Cell (iPSC) lines
facilitates scientific investigation of the underlying diseases. We will expand our program of patient outreach,
particularly to under-served populations. We will extend our UDN-based genomic medicine educational
program both in scope and by broadening its eligibility. In Aim 2, we propose to develop and implement novel
methods in areas of high potential to increase diagnostic yield. This includes algorithms for the detection of
small genomic insertions and deletions as well as large scale structural variation. We will develop alignment
algorithms using graph reference genomes and promote the use of long-read sequencing technologies. We will
apply machine learning to the systematic integration of RNA sequencing, metabolomic, and phenotypic data
with the electronic medical record and the entire medical literature to improve diagnostic yield. In Aim 3, we
propose to facilitate diagnosis through enhanced cellular and model organisms phenotyping. We will
implement immunomic and metagenomic approaches such as T cell, B cell and unknown organism
sequencing for undiagnosed cases. We will utilize methods for moderate- and high-throughput phenotyping of
iPS-derived cells and promote novel drug discovery via high throughput drug screening both with FDA-
approved drugs and large scale small molecule libraries. Beyond Phase II, Stanford Medicine has made a
strong commitment to the continuation of the Center for Undiagnosed Diseases at Stanford through a multi-
million dollar institutional commitment. In summary, we aim to build on the success of Phase I of the UDN by
streamlining processes, maximizing collaboration and outreach, optimizing computational algorithms,
extending scientific investigation towards therapeutic discovery, and promoting engagement of hospital
leaders, clinicians, scientists, policy-makers, and philanthropists to ensure this national resource is sustained
long beyond the duration of this award.
摘要
未诊断疾病网络(UDN)增加了未诊断疾病患者获得
全国顶尖的临床医生和科学家。该网络的第二阶段将促进统一数字网络努力的过渡
通过扩大临床站点、改进方法和与
定期的临床实践。在这里,我们提出了一个研究方案,它将(1)促进及时、准确的诊断
(2)通过新的数据分析方法提高诊断率
以及(3)探索疾病的潜在机制,以加速治疗药物的发现。在……里面
目的1,我们建议通过包括访问前图表的方案来评估转诊到UDN的患者
复习和遗传咨询,然后进行个体化访问,在此期间标准化表型和
收集环境数据。生物样本有助于对疾病的基因组、多基因组和细胞评估。
成纤维细胞的扩增,在某些情况下,诱导多能干细胞(IPSC)的产生
促进对潜在疾病的科学调查。我们将扩大我们的病人外展计划,
尤其是对服务不足的人群。我们将扩展我们基于UDN的基因组医学教育
计划的范围和扩大其资格。在目标2中,我们建议开发和实施小说
方法在高潜力地区,以提高诊断产量。这包括用于检测
基因组的小插入和小缺失以及大规模的结构变异。我们将制定调整方案
算法使用图形参考基因组,并推广使用长读测序技术。我们会
将机器学习应用于RNA测序、代谢组和表型数据的系统集成
配合电子病历和整个医疗文献,提高诊断率。在目标3中,我们
建议通过增强的细胞和模式生物表型来促进诊断。我们会
实施免疫组学和元基因组学方法,如T细胞、B细胞和未知生物
对未确诊病例进行测序。我们将利用中等和高通量的表型鉴定方法
通过与FDA的高通量药物筛选,促进新药发现
批准的药物和大型小分子文库。在第二阶段之后,斯坦福医学已经取得了
坚定地致力于继续在斯坦福大学通过多个
百万美元的机构承诺。总而言之,我们的目标是在统一数字域名第一阶段取得成功的基础上,通过
简化流程,最大限度地扩大协作和外联,优化计算算法,
将科学研究延伸到治疗发现,促进医院参与
领导、临床医生、科学家、政策制定者和慈善家,以确保这一国家资源的持续
远远超过了这个奖项的期限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Euan A Ashley其他文献
Artificial Intelligence in Molecular Medicine. Reply.
分子医学中的人工智能。
- DOI:
10.1056/nejmc2308776 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bruna Gomes;Euan A Ashley - 通讯作者:
Euan A Ashley
Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data.
通过人工智能增强心脏 MRI 预测诊断和舒张充盈压:医院数据的建模研究。
- DOI:
10.1016/s2589-7500(24)00063-3 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Lehmann;Bruna Gomes;Niklas Vetter;Olivia Braun;Ali Amr;Thomas Hilbel;Jens Müller;Ulrich Köthe;Christoph Reich;E. Kayvanpour;F. Sedaghat;Manuela Meder;J. Haas;Euan A Ashley;Wolfgang Rottbauer;D. Felbel;Raffi Bekeredjian;H. Mahrholdt;Andreas Keller;P. Ong;Andreas Seitz;H. Hund;N. Geis;F. André;Sandy Engelhardt;Hugo A Katus;Norbert Frey;Vincent Heuveline;Benjamin Meder - 通讯作者:
Benjamin Meder
Euan A Ashley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Euan A Ashley', 18)}}的其他基金
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10682163 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Diagnosing the Unknown for Care and Advancing Science (DUCAS)
诊断未知的护理和推进科学 (DUCAS)
- 批准号:
10872436 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Systematically mapping variant effects for cardiovascular genes
系统地绘制心血管基因的变异效应
- 批准号:
10501975 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Center for Undiagnosed Diseases at Stanford Administrative Supplement
斯坦福大学未确诊疾病中心行政增刊
- 批准号:
10677455 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10083762 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10576926 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
9884435 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Structure function relationships from deep mutational scanning in human cardiomyopathy
人类心肌病深度突变扫描的结构功能关系
- 批准号:
10364603 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




