Free Energy Sampling of Long-Timescale Biomolecular Dynamics
长时标生物分子动力学的自由能采样
基本信息
- 批准号:10160921
- 负责人:
- 金额:$ 30.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-10 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsBinding SitesBiochemicalBiological ProcessBiophysicsCharacteristicsCollaborationsCommunitiesComplexDataDevelopmentEnsureEnvironmentEtiologyEventFree EnergyGlucokinaseGlucoseGoalsHumanInvestigationKineticsKnowledgeLightMathematicsMethodsModelingMolecular ConformationMotionPlayProcessProtein ConformationProtein DynamicsProteinsRegulationReportingRoleSamplingSchemeSlaveStructureSystemTechniquesTheoretical StudiesWaterbasebiophysical analysiscomputer studiesdesigndrug discoveryexperimental studyimprovedinnovationmethod developmentmillisecondmolecular dynamicsnovelprotein functionresponsesimulation
项目摘要
Project Summary
Protein aimlessly fluctuates in its surrounding. In order for energy to be effectively channeled
through the complex interaction network and so accurately activate essential transitions, often
hundreds of microseconds, to milliseconds, even to tens of seconds of dynamics are required.
Several decades’ biophysical studies suggest that proteins likely possess characteristic energy
landscapes that encode specific functions. Although theoretical and computational studies have
greatly improved our understanding on protein energy landscape, the existing knowledge is
still very limited. Dominant concepts, such as conformation selection model and hierarchical
energy landscape (conformational slaving) model, have not been adequately understood at the
atomistic level. This is largely due to lack of robust “predictive” molecular dynamics sampling
technique that can enable adequate exploration of long-timescale protein conformational
changes.
The orthogonal space sampling (OSS) scheme, particularly its high order generalization, allows
for systematic acceleration of energy flow as required for thorough sampling enhancement.
Preliminary studies suggest that orders of magnitude of sampling enhancement are plausible.
However a major challenge for OSS has been lack of rigorous algorithmic solution to ensure
sampling robustness. Our recent innovation in the adaptive dynamic reporting (ADR) method
development sheds light on this challenge. In this project, we will systematically develop and
improve this novel “predictive” sampling strategy in the context of protein long-timescale
dynamics and employ to-be-developed methods to quantitatively explore protein large-scale
conformational dynamics and decipher biophysical principles underlying protein functional
dynamics.
This study includes three specific goals: (1) Developing high order orthogonal space tempering
(HOOST) method based on the adaptive dynamic reporting (ADR) kernel to enable robust
“predictive” free energy sampling of biomolecular long-timescale dynamics; (2) Understanding
roles of solvation fluctuation in protein dynamics; (3) Understanding the mechanistic basis of
human Glucokinase (hGK) regulation.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Yang其他文献
Wei Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Yang', 18)}}的其他基金
Immunosuppression after cardiac arrest and resuscitation
心脏骤停和复苏后的免疫抑制
- 批准号:
10367177 - 财政年份:2022
- 资助金额:
$ 30.06万 - 项目类别:
Immunosuppression after cardiac arrest and resuscitation
心脏骤停和复苏后的免疫抑制
- 批准号:
10543113 - 财政年份:2022
- 资助金额:
$ 30.06万 - 项目类别:
Targeted neuromodulation to enhance recovery of the aged brain after ischemic stroke
靶向神经调节促进缺血性中风后老年大脑的恢复
- 批准号:
10593316 - 财政年份:2022
- 资助金额:
$ 30.06万 - 项目类别:
RIPK2/MKK7/c-Myc Signaling as a Therapeutic Target in Prostate Cancer Metastasis
RIPK2/MKK7/c-Myc 信号传导作为前列腺癌转移的治疗靶点
- 批准号:
10686235 - 财政年份:2022
- 资助金额:
$ 30.06万 - 项目类别:
Free Energy Sampling of Long-Timescale Biomolecular Dynamics
长时标生物分子动力学的自由能采样
- 批准号:
10634501 - 财政年份:2020
- 资助金额:
$ 30.06万 - 项目类别:
Free Energy Sampling of Long-Timescale Biomolecular Dynamics
长时标生物分子动力学的自由能采样
- 批准号:
10394308 - 财政年份:2020
- 资助金额:
$ 30.06万 - 项目类别:
Administrative Supplement: Free Energy Sampling of Long-Timescale Biomolecular Dynamics
行政补充:长时标生物分子动力学的自由能量采样
- 批准号:
10388644 - 财政年份:2020
- 资助金额:
$ 30.06万 - 项目类别:
Mast cell activation as a determinant of neurologic injury after cardiac arrest
肥大细胞激活是心脏骤停后神经损伤的决定因素
- 批准号:
10200923 - 财政年份:2020
- 资助金额:
$ 30.06万 - 项目类别:
The Unfolded Protein Response in Ischemic Stroke
缺血性中风中未折叠的蛋白质反应
- 批准号:
10538594 - 财政年份:2016
- 资助金额:
$ 30.06万 - 项目类别:
The Unfolded Protein Response and Neuroprotection in Stroke
中风中未折叠的蛋白质反应和神经保护
- 批准号:
9219590 - 财政年份:2016
- 资助金额:
$ 30.06万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.06万 - 项目类别:
Research Grant














{{item.name}}会员




