Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
基本信息
- 批准号:10161829
- 负责人:
- 金额:$ 70.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmericanAntidepressive AgentsArchitectureAssessment toolBehavioral MechanismsBiologicalChronicChronic stressCodeComplexCountryDataData ElementDevelopmentDevicesDiagnosisDiseaseEarly DiagnosisEmotionalEnrollmentEpidemiologyFundingGenesGenetic RiskGenetic VariationGenomeGenomicsGoalsHealth TechnologyHeart RateHourIndividualInfrastructureIntentionInternshipsInterventionLeadLinkMajor Depressive DisorderMeasuresMediatingMedicalMental DepressionModelingMonitorMoodsNeurocognitionNeurocognitivePathway interactionsPhasePhenotypePhysical activityPhysiciansPopulationPrediction of Response to TherapyProgress ReportsPublic HealthPublishingRiskSamplingSleepSleep DeprivationSpecific qualifier valueStressTestingTimeTrainingTranslatingUntranslated RNAVariantWorkWorld Health Organizationbasebehavior measurementbehavioral healthbehavioral phenotypingbiosignaturecircadiancohortdepressive symptomsdesigndisabilityfitbitgenetic associationgenetic variantgenome wide association studygenome-wideheart rate variabilityimprovedinnovationmHealthmobile computingmultimodalitynovelprospectivepublic health prioritiesstressortherapy developmenttooltrait
项目摘要
Large scale genome-wide association studies, for the first time, have identified genetic variation definitively
associated with major depression. To translate this advancement into improved diagnosis, monitoring, and
treatment, a critical next step is to elucidate the behavioral mechanisms linking the implicated genetic variation
with depression. Unfortunately, the large-scale studies that have identified associated variants have typically
employed single-time point and limited phenotypic assessments that are not suited to study mechanisms
linking genes and depression, a chronic multi-modal disease. Our long-term goal is to elucidate the
pathophysiological architecture underlying depression to facilitate the development of improved treatments.
Our objective in this application is to understand how genetic variants associated with the development of
depression exert their effect. Medical internship, the first year of professional physician training, presents a
unique situation in which we can prospectively predict the onset of a uniform, chronic stressor and follow the
development of depressive symptoms. We have found that rates of depression increase dramatically, from 4%
prior to internship to 26% during internship year. Currently, the study enrolls 3,000-3,500 interns annually. Our
intern cohort is an ideal population to closely monitor the development of depression with recent mobile health
technology as a tool to follow these individuals in real-time, with objective measures. In the proposed study,
we will combine, cutting edge-genomics, mobile health technology, and the prospective intern stress design to
identify the mechanisms through which depression-related genetic variation lead to depression. We
hypothesize that depression-associated genetic variation acts to increase the risk of depression through
specific mobile measured behavioral phenotypes. To test this hypothesis, we propose the following three
specific aims: 1) Identify data driven behavioral phenotypes, derived from mobile data elements, that
predict short-term risk for mood changes and depressive episodes; 2) Identify genetic variants
associated with depression under stress; and 3) Elucidate behavioral phenotypes through which
genetic variants may act to increase the risk of depression. Our approach is innovative because it
combines a naturally occurring stress paradigm and new real-time objective assessment tools in order to
elucidate the relationship between genes, objective, real-time markers and depression with an approach that,
to date, has not been attempted. This project is significant because it has the potential to identify key
mechanisms underlying genetic associations involved in depression under stress, an advancement that holds
promises in predicting treatment response and identifying novel targets for antidepressant development.
大规模的全基因组关联研究首次明确确定了遗传变异
与重度抑郁症有关为了将这一进步转化为更好的诊断、监测和
治疗,关键的下一步是阐明行为机制连接牵连遗传变异
抑郁症不幸的是,已经确定相关变异的大规模研究通常
采用不适合研究机制的单时间点和有限表型评估
将基因与抑郁症联系起来,抑郁症是一种慢性多模式疾病。我们的长期目标是阐明
抑郁症的病理生理结构,以促进改善治疗的发展。
我们在本申请中的目标是了解遗传变异如何与
抑郁症发挥其作用。医学实习,专业医师培训的第一年,提出了一个
在这种独特的情况下,我们可以前瞻性地预测一个统一的,慢性应激源的发作,并遵循
抑郁症状的发展。我们发现抑郁症的发病率从4%
在实习期间,26%。目前,这项研究每年招收3 000至3 500名实习生。我们
实习生队列是密切监测最近移动的健康抑郁症发展的理想人群
技术作为一种工具,以客观的措施实时跟踪这些人。在拟议的研究中,
我们将结合联合收割机、尖端基因组学、移动的医疗技术和未来的实习生压力设计,
确定抑郁症相关的遗传变异导致抑郁症的机制。我们
假设与抑郁症相关的遗传变异通过以下方式增加抑郁症的风险:
特定的移动的测量行为表型。为了验证这一假设,我们提出以下三点:
具体目标:1)识别数据驱动的行为表型,其来源于移动的数据元素,
预测情绪变化和抑郁发作的短期风险; 2)识别遗传变异
与压力下的抑郁症有关; 3)阐明行为表型,
遗传变异可能会增加患抑郁症的风险。我们的方法是创新的,因为它
结合自然发生的压力范例和新的实时客观评估工具,
阐明基因,客观,实时标记和抑郁症之间的关系,
迄今为止,还没有尝试过。这个项目意义重大,因为它有可能确定关键的
压力下抑郁症的遗传相关机制,这一进展值得关注
在预测治疗反应和确定抗抑郁药开发的新靶点方面有希望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SRIJAN SEN其他文献
SRIJAN SEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SRIJAN SEN', 18)}}的其他基金
Mobile Technology to Identify Behavioral Mechanisms Linking Genetic Variation and Depression
移动技术识别遗传变异和抑郁症之间的行为机制
- 批准号:
10728697 - 财政年份:2023
- 资助金额:
$ 70.91万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8573528 - 财政年份:2013
- 资助金额:
$ 70.91万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
9317292 - 财政年份:2013
- 资助金额:
$ 70.91万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10399597 - 财政年份:2013
- 资助金额:
$ 70.91万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8874303 - 财政年份:2013
- 资助金额:
$ 70.91万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
9524194 - 财政年份:2013
- 资助金额:
$ 70.91万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8278523 - 财政年份:2011
- 资助金额:
$ 70.91万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8460930 - 财政年份:2011
- 资助金额:
$ 70.91万 - 项目类别:
Utilizing Medical Internship to Identify Genetic Variation Associated with Depres
利用医学实习来识别与抑郁症相关的基因变异
- 批准号:
8164789 - 财政年份:2011
- 资助金额:
$ 70.91万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8645757 - 财政年份:2011
- 资助金额:
$ 70.91万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant