Photon Absorption Spectroscopy CAmera for Leaks (PASCAL)

泄漏光子吸收光谱相机 (PASCAL)

基本信息

  • 批准号:
    10032539
  • 负责人:
  • 金额:
    $ 48.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

For the UK to reach a net-zero carbon economy, the regulation and limitation of greenhouse gas (GHG) emissions needs to rapidly expand. Natural gas is fast becoming our most dominant fossil fuel and industrial leaks are now a leading source of GHG emissions. Industry majors have committed to expanding emissions monitoring, but the technologies currently available are expensive, labour intensive, and inaccurate. Quantum Gas Imaging (QGI), invented by QLM, is an emerging technology that uses non-cryogenic Shortwave Infrared (SWIR) Single-Photon Avalanche Detectors (SPADs) to demonstrate innovative and highly sensitive long-range, single-photon lidar gas imagers that locate and measure invisible gases including methane, CO2 and more.The current generation of the QGI camera uses mechanical scanning to analyse an area with a single sensor. This limits the data acquisition rate, thus prohibiting fast mobile deployment, in the interest of maintaining the sensitivity and spatial resolution necessary. Commerical-off-the-shelf (COTS) SPAD arrays can allow for non-mechanical scanning, but current readout electronics are limited in throughput to allow for such developments. SWIR SPAD array readouts, such as these, require high-speed data acquisition. When combined with the flexibility of Field-Programmable Gate-Array (FPGA) technology, this is going to be a key enabling technology for all other photonic 2nd generation quantum technologies based on single-photon quantum optics research, including free-space quantum telecommunications, photonic quantum processors, and lidar.In this project, QLM Technology will develop a non-mechanical scanning QGI camera that exploits SPAD arrays and their high throughput capabilities to achieve state-of-the-art acquisition rates, sensitivity, and large detector dynamic range. Aston University will develop the advanced signal processing algorithm required to achieve high speed real-time Time to Digital Converter (TDC) and Time-Correlated Single Photon Counting (TCSPC) on FPGAs and utilises multi-photon information for the formation of the correlations. RedWave will build the electronics platform to incorporate the advanced high speed time tagging capability into new standalone products, which can be applied in other fields for the 2nd generation quantum technology used in life science and free-space communications, thanks to the flexibility of the FPGA based system.
英国要实现净零碳经济,就需要迅速扩大对温室气体(GHG)排放的监管和限制。天然气正在迅速成为我们最主要的化石燃料,工业泄漏现在是温室气体排放的主要来源。工业巨头已承诺扩大排放监测,但目前可用的技术昂贵,劳动密集型,不准确。量子气体成像(QGI)是由QLM发明的一项新兴技术,它使用非低温短波红外(SWIR)单光子雪崩探测器(SPAD)来展示创新和高灵敏度的远程单光子激光雷达气体成像仪,可以定位和测量不可见的气体,包括甲烷,CO2等。当前一代的QGI相机使用机械扫描来分析一个区域,使用单个传感器。这限制了数据采集速率,从而为了保持必要的灵敏度和空间分辨率而禁止快速移动的部署。商用现货(COTS)SPAD阵列可以允许非机械扫描,但是当前的读出电子器件在吞吐量方面受到限制以允许这种发展。SWIR SPAD阵列读出,如这些,需要高速数据采集。当与现场可编程门阵列(FPGA)技术的灵活性相结合时,这将成为基于单光子量子光学研究的所有其他光子第二代量子技术的关键使能技术,包括自由空间量子通信,光子量子处理器和激光雷达。在这个项目中,QLM Technology将开发一种非机械扫描QGI相机,该相机利用SPAD阵列及其高吞吐量功能,以实现最先进的采集速率、灵敏度和大探测器动态范围。阿斯顿大学将开发先进的信号处理算法,以在FPGA上实现高速实时时间数字转换器(TDC)和时间相关单光子计数(TCSPC),并利用多光子信息形成相关性。RedWave将建立电子平台,将先进的高速时间标记能力融入新的独立产品中,由于基于FPGA的系统的灵活性,该产品可应用于生命科学和自由空间通信中使用的第二代量子技术的其他领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Studentship

相似海外基金

CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
  • 批准号:
    2339502
  • 财政年份:
    2024
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Continuing Grant
Comprehensive and Versatile In-house X-ray Absorption Spectroscopy Facility
全面且多功能的内部 X 射线吸收光谱设备
  • 批准号:
    LE230100052
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Structure analysis of shock-compressed iron alloys by in-situ femtosecond X-ray absorption spectroscopy
原位飞秒 X 射线吸收光谱分析冲击压缩铁合金的结构
  • 批准号:
    23K17702
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Total absorption spectroscopy (TAS) of neutron-rich nuclei relevant to nucleosynthesis of heavy elements
与重元素核合成相关的富中子核的总吸收光谱(TAS)
  • 批准号:
    23KJ0727
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A New Generation of Absorption Spectroscopy Experiments Probing the Epoch of Reionization
新一代吸收光谱实验探索再电离时代
  • 批准号:
    2307180
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Standard Grant
CAS-SC: Uncovering Mechanistic Details of Photo-Induced Charge Transfer in Thin Films of Photoactive Materials with In situ and Operando Transient Absorption Spectroscopy
CAS-SC:利用原位和操作瞬态吸收光谱揭示光敏材料薄膜中光致电荷转移的机制细节
  • 批准号:
    2313290
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
  • 批准号:
    2243745
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
  • 批准号:
    2243746
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Standard Grant
Laser- and Detectionsystem for transient absorption spectroscopy with two excitation pulses
具有两个激发脉冲的瞬态吸收光谱激光和检测系统
  • 批准号:
    525172201
  • 财政年份:
    2023
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Major Research Instrumentation
Overcoming photosensitivity limits and unlocking unprecedented quantum control using entangled two-photon absorption spectroscopy
使用纠缠双光子吸收光谱克服光敏性限制并解锁前所未有的量子控制
  • 批准号:
    566599-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 48.12万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了