Revealing the Ligand Binding Landscape with Advanced Molecular Simulation Methods
利用先进的分子模拟方法揭示配体结合景观
基本信息
- 批准号:10166872
- 负责人:
- 金额:$ 33.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAlgorithmsBindingBiophysicsCellsChemicalsCloningControl GroupsCoupledDevelopmentDiffusionDockingDrug DesignDrug KineticsDrug ModelingsDrug TargetingEpoxide hydrolaseEquilibriumEventFree EnergyFreedomG-Protein-Coupled ReceptorsHuman bodyIngestionIntakeKineticsKnowledgeLaboratoriesLeadLigand BindingLigandsMetabolismMethodsModelingMolecularMolecular ConformationMotionOrganismOutcomePathway interactionsPharmaceutical PreparationsPharmacologic SubstanceProcessPropertyProtein BiosynthesisProtein DynamicsProteinsRunningSamplingScreening procedureSeriesStructural ModelsSystemTechniquesTechnologyTestingTherapeuticTimeTissuesUncertaintyWorkbasecell growthcomputational pipelinesdesigndiabetic patientdriving forcedrug actiondrug discoverydrug efficacydruggable targetempoweredexperimental studyfitnessimprovedinhibitor/antagonistinsightmolecular dynamicsnovelpainful neuropathypharmacophoreprotein degradationresidencescreeningsimulationsuccesstime usetoolvirtual screening
项目摘要
Project Summary
Human bodies are living systems that are constantly in flux. Pharmaceutical drugs take action within
this non-equilibrium context: after a drug is ingested it is absorbed, distributed to tissues, bound (both on-target
and off-target), released, metabolized and eliminated. Each of these processes occurs with a rate, and the
efficacy of a drug is a largely function of these rates. In contrast, the dominant paradigm in drug discovery has
been the optimization of affinity, which alone is insufficient to determine the rates of binding (kon) and unbinding
(koff). Though the binding affinity is the ratio of the koff and kon, and longer residence times can lead to higher
binding affinity, these are not well-correlated, as kon values can vary from diffusion-limited (109 M-1 s-1) down to
<104 M-1 s-1 for protein targets with slow degrees of freedom, such G-protein-coupled receptors.
Prediction of affinity is easier than kinetics as it is a state function, which depends only on the endpoints
of the binding path. Binding kinetics are dependent on the molecular details encoded in the ligand binding
transition state – the highest point in free energy along the binding pathway. Molecular dynamics simulation
can be used to study these transition states in atomic detail, but only recently – empowered by advances in
hardware and new algorithms for simulation – has it become capable of simulating unbiased ligand binding and
release events, which can be coupled to long timescale protein motions. As such, little is known about the
ligand binding transition state for a given protein target, and how it changes from ligand to ligand.
Empowered by the WExplore enhanced sampling method (developed by the PI), the Dickson laboratory
will use molecular dynamics simulation to reveal the landscape of protein-ligand conformations. WExplore can
generate extremely rare ligand release pathway ensembles (events occurring only once in ~1000 seconds)
without the use of biasing forces, which is a dramatic improvement upon current technology. Importantly, this
will enable analysis of the ligand binding transition states for a series of ligands on two protein drug targets
(soluble epoxide hydrolase (sEH), and Translocator protein 18kDA (TSPO)). This will mark the first study of the
robustness of ligand binding transition states, which is a key quantity for kinetics-based drug design.
Further, this work will build a method to encode properties of the transition state into screening tools
that can, for the first time, screen ligands according to kinetics in a high-throughput manner. These methods
will then be applied to identify new long residence time inhibitors for both sEH and TSPO, two systems where
residence time has been shown to be important for drug efficacy.
项目摘要
人体是不断变化的生命系统。药品在以下方面采取行动
这种非平衡背景:药物被摄取后被吸收,分布到组织,结合(两者都在靶上
和偏离目标)、释放、代谢和消除。这些过程中的每一个都以一定的速率发生,并且
一种药物的疗效在很大程度上取决于这些比率。相比之下,药物发现中的主导范式
亲和力的优化,单靠亲和力不足以确定结合率(Kon)和解结率
(科夫)。虽然结合亲和力是Koff和Kon的比率,但停留时间越长,会导致更高的亲和力
结合亲和力,这些不是很好的相关性,因为kon值可以从扩散受限(109M-1 S-1)到
<;104M-1 S-1为具有慢自由度的蛋白质靶标,如G蛋白偶联受体。
亲和力的预测比动力学更容易,因为它是一个状态函数,只依赖于端点
绑定路径的。结合动力学取决于配体结合中编码的分子细节
过渡态--结合路径上自由能的最高点。分子动力学模拟
可以用来研究这些过渡态的原子细节,但只是在最近--在
用于模拟的硬件和新算法-它是否能够模拟无偏配体结合和
释放事件,这可以与长时间尺度的蛋白质运动相结合。因此,人们对此知之甚少
给定蛋白质靶标的配体结合过渡态,以及它如何在不同的配体之间变化。
在WExplore增强型抽样方法(由PI开发)的支持下,Dickson实验室
将使用分子动力学模拟来揭示蛋白质-配体构象的景观。WExplore可以
产生极其罕见的配体释放途径集合(事件在~1000秒内只发生一次)
没有使用偏向力,这是对当前技术的戏剧性改进。重要的是,这
将能够分析两个蛋白质药物靶标上的一系列配体的配体结合过渡态
(可溶性环氧化物水解酶(SEH)和转运蛋白18kDA(TSPO))。这将标志着对
配体结合过渡态的稳健性,这是基于动力学的药物设计的关键参数。
此外,这项工作将建立一种方法,将过渡态的属性编码到筛选工具中
这可以第一次以高通量的方式根据动力学筛选配体。这些方法
然后将应用于为sEH和TSPO确定新的长停留时间抑制剂,这两个系统
滞留时间已被证明对药物疗效很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Dickson其他文献
Alexander Dickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Dickson', 18)}}的其他基金
Revealing pathways and kinetics of molecular recognition with advanced molecular simulation algorithms
通过先进的分子模拟算法揭示分子识别的途径和动力学
- 批准号:
10445567 - 财政年份:2018
- 资助金额:
$ 33.49万 - 项目类别:
Revealing pathways and kinetics of molecular recognition with advanced molecular simulation algorithms
通过先进的分子模拟算法揭示分子识别的途径和动力学
- 批准号:
10618938 - 财政年份:2018
- 资助金额:
$ 33.49万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 33.49万 - 项目类别:
Continuing Grant














{{item.name}}会员




