Functional analysis of insect-specific adhesion in a model kinetoplastid
模型动质体中昆虫特异性粘附的功能分析
基本信息
- 批准号:10170257
- 负责人:
- 金额:$ 20.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAdhesionsAdhesivesAfrican TrypanosomiasisArthropodsBiological AssayBiologyBrazilCRISPR/Cas technologyCandidate Disease GeneCell LineCellsChagas DiseaseCharacteristicsChemicalsComplexCrithidiaCrithidia fasciculataCulicidaeCyclic AMPDNA StructureDevelopmentDiseaseEukaryotic CellFamilyFollow-Up StudiesGene ExpressionGene Expression ProfilingGenerationsGeneticGenomeHemidesmosomesHeterogeneityHindgutHumanImmunocompetentImmunocompromised HostIn VitroInfectionInsect VectorsInsectaKnock-outLaboratory InfectionLeishmaniaLeishmaniasisLeptomonasLife Cycle StagesMediatingMetabolismMitochondrial DNAModelingMolecularMorphologyNutrientOutcomeParasitesPathogenicityPathway interactionsPatientsPhenotypePhylogenetic AnalysisProcessProductionProteinsPublishingRegulationReportingResearch PersonnelResistanceResourcesRoleSignal PathwaySignal TransductionSignal Transduction PathwayStructureSwimmingSystemTestingTissuesTranscriptTrypanosoma brucei bruceiTrypanosoma cruziVisceral LeishmaniasisWorkadhesion processburden of illnessco-infectionemerging pathogengenetic manipulationhigh throughput screeninghigh throughput technologyhuman diseasehuman pathogenimprovedin vitro Assayin vivoinsightlive cell imaginglive cell microscopynovelnovel strategiespathogenstandard of caretechnology developmenttherapeutic targettime usetissue culturetooltranscriptome sequencingtranscriptomicstransmission processvectorvirtual
项目摘要
SUMMARY
Kinetoplastid parasites are single-celled eukaryotic parasites, some of which are causative agents of
devastating human diseases, including Chagas disease, Leishmaniasis, and human African
trypanosomiasis. Pathogenic kinetoplastids are transmitted by insect vectors. These parasite-vector
relationships are specific, with different insect species harboring different species of parasite. While the
life cycles of kinetoplastid parasites in their respective insect hosts can differ, one shared feature is
adherence of the parasite to insect tissue. The adhesive stage is necessary for colonization of the
insect, and in some cases allows for development of infectious forms. For all kinetoplastids, the
adhesion itself has shared ultrastructural features, and resembles a hemidesmosome. The molecular
components of this adhesive structure, and the signaling pathways that trigger its formation, are
completely unknown. Crithidia fasciculata is a parasite that only infects one host, the mosquito. It is
generally not considered to be a human pathogen; however, there have been reports of human
infections, typically in immunocompromised patients or in co-infections with Leishmania spp.
C. fasciculata has for years been used as a model for exploring the basic biology of kinetoplastid
parasites. They represent a powerful system to investigate mechanisms of adhesion since they will
adhere not only to the hindgut of their mosquito host, but to artificial substrates such as tissue culture
plastic. This allows us to use in vitro assays to determine the role of various candidate proteins and
pathways in the process of adhesion. In addition, we can observe the stages of the adhesion process in
real time using live-cell imaging.
We hypothesize that the adhesive stage of the parasite is a distinct developmental form, and that
differentiation to this form is mediated by specific signal transduction pathways. In addition, we predict
that adhesion is a multi-stage process involving novel proteins. We will address these hypotheses
through the following Specific Aims: (1) Determine the role of the cyclic AMP signaling pathway in
regulating adhesion, and (2) Establish conditions for rapid creation of genetic knock-outs in C.
fasciculata using CRISPR/Cas9. This project builds upon our published work using RNAseq to compare
gene expression profiles of adherent and swimming cells, and will set the stage for a high-throughput
approach to determine the role of a large number of candidate proteins in adhesion in vitro, which can
then be evaluated in vivo for their ability to colonize mosquitoes. The outcomes of the proposed work
will be improved tools for genetic manipulation of C. fasciculata, which will benefit researchers using
this model, and insight into shared mechanisms for adhesion of diverse kinetoplastid species to their
insect hosts.
概括
动力质体寄生虫是单细胞的真核寄生虫,其中一些是原因
毁灭性的人类疾病,包括查加斯病,利什曼病和人类非洲人
锥虫病。致病动力质体是由昆虫向量传播的。这些寄生虫载体
关系是特异性的,具有不同种类的寄生虫物种。而
它们各自的昆虫宿主中的动质寄生虫的生命周期可能有所不同,一个共同的特征是
寄生虫遵守昆虫组织。粘合剂阶段对于定植
昆虫,在某些情况下允许发展感染形式。对于所有动力质体的
粘附本身具有共享的超微结构特征,并且类似于Hemidesmosmos。分子
该粘合剂结构的组成部分以及触发其形成的信号通路是
完全未知。 Crithidia fasciculata是一种仅感染一个宿主蚊子的寄生虫。这是
通常不认为是人类病原体;但是,有人类的报道
感染,通常在免疫功能低下的患者或与利什曼原虫属的共同感染中。
C. fasciculata多年来一直被用作探索动力质体基本生物学的模型
寄生虫。它们代表了调查粘附机制的强大系统,因为它们将
不仅遵守其蚊子宿主的后肠,还遵守人造底物(例如组织培养物)
塑料。这使我们能够使用体外测定来确定各种候选蛋白和
粘附过程中的途径。此外,我们可以观察到粘附过程的阶段
实时使用活细胞成像。
我们假设寄生虫的粘附阶段是一种独特的发展形式,并且
与该形式的区分是由特定的信号转导途径介导的。此外,我们预测
这种粘附是涉及新蛋白质的多阶段过程。我们将解决这些假设
通过以下特定目的:(1)确定环状AMP信号通路的作用
调节粘附,(2)建立了快速创造遗传敲除的条件。
使用CRISPR/CAS9的fasciculata。该项目建立在我们使用RNASEQ进行比较的我们发表的工作的基础上
粘附和游泳细胞的基因表达谱,并将为高通量设定阶段
确定大量候选蛋白在体外粘附中的作用的方法,这可以
然后在体内评估其定植蚊子的能力。拟议工作的结果
将改进用于遗传操纵fasciculata的工具,该工具将使研究人员使用
该模型,以及对各种动力质体物种粘附的共享机制的见解
昆虫宿主。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A sticky situation: When trypanosomatids attach to insect tissues.
- DOI:10.1371/journal.ppat.1011854
- 发表时间:2023-12
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Povelones其他文献
Megan Povelones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Povelones', 18)}}的其他基金
Functional analysis of insect-specific adhesion in a model kinetoplastid
模型动质体中昆虫特异性粘附的功能分析
- 批准号:
10041522 - 财政年份:2020
- 资助金额:
$ 20.21万 - 项目类别:
相似国自然基金
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:72272131
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
不确定性下创业团队能量和抗逆力对创业坚持的权变影响研究
- 批准号:72162025
- 批准年份:2021
- 资助金额:29 万元
- 项目类别:地区科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:32100850
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Multifunctional Roles of AgI/II Family Proteins
AgI/II 家族蛋白的多功能作用
- 批准号:
10750344 - 财政年份:2023
- 资助金额:
$ 20.21万 - 项目类别:
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
- 批准号:
10666171 - 财政年份:2023
- 资助金额:
$ 20.21万 - 项目类别:
The Role of Staphylococcus aureus SasD in Lung
金黄色葡萄球菌 SasD 在肺中的作用
- 批准号:
10748089 - 财政年份:2023
- 资助金额:
$ 20.21万 - 项目类别:
Novel Biofilm Paradigm Explaining Clinical Implant-Associated Illness.
解释临床植入相关疾病的新型生物膜范式。
- 批准号:
10515767 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别: