Utilizing Endocytic Dynamics to Obtain Comprehensive Spatiotemporal Tension Maps of Live Tissues
利用内吞动力学获得活组织的全面时空张力图
基本信息
- 批准号:10171594
- 负责人:
- 金额:$ 34.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsBiological ProcessBiomedical ResearchCardiovascular DiseasesCell membraneCell physiologyCell surfaceCellsCellular MembraneClathrinComputer softwareData SetDevelopmentDisease ProgressionDrosophila genusDrosophila melanogasterEmbryoEmbryonic DevelopmentEndocytosisEukaryotaEukaryotic CellFluorescenceGeneticGoalsImageImaging technologyIn SituIndividualLabelLongevityMapsMeasurementMechanicsMediatingMembrane LipidsMembrane Protein TrafficMembrane ProteinsMethodologyMicroscopeMicroscopyModelingModificationMorphologyNatureNeoplasm MetastasisOpticsOrganismPathologicPathway interactionsPerformancePublic HealthReadingRegulationResearchResolutionRoleSurfaceSystemTechniquesTechnologyTestingTimeTissuesWorkbasecell typedesigndevelopmental diseaseexperimental studyfluorescence imaginghigh riskimaging modalityinnovative technologieslive cell imagingmechanical forcenew technologynon-invasive systemparticleprecise genome editingresponsespatial temporal variationspatiotemporaltemporal measurementtool
项目摘要
Utilizing Endocytic Dynamics to Obtain Comprehensive Spatiotemporal Tension Maps of Live
Tissues
Project Summary
Tension in tissues relates to pivotal morphological changes during development, as well as pathologic
transformations that trigger cardiovascular disorders and cancer metastasis. Prevalent techniques employed to
quantify cellular tension are not applicable to tissues due to their invasive nature. This technical gap is a critical
barrier for biomedical research aiming to elucidate the roles of tissue mechanics in disease progression and
developmental disorders.
We propose developing a methodology for quantifying the tensile forces within cells and tissues by
characterizing the tension response of a major cellular membrane traffic pathway: clathrin-mediated
endocytosis (CME). Our previous works and precursor experiments show that spatial and temporal variations
in tension can be determined through the analysis of CME dynamics in cells. We propose that the robust
anticorrelation between tension and CME dynamics can be used to develop comprehensive spatiotemporal
tension maps of living systems noninvasively.
In Aim 1, we will characterize the parameters defining CME dynamics at distinct values of cell tension. We
will also determine the spatial and temporal resolving power of tension maps developed using CME dynamics.
In Aim 2, we will validate the applicability of the proposed methodology to tissues of living multicellular
organisms. We will use Drosophila melanogaster embryogenesis as the model developing organism. In Aim 3,
we will develop a software platform for generating tension maps by utilizing CME dynamics.
We envision that this high-risk, high-payoff approach will provide a major leap in biomedical research as it
offers noninvasive assembly of comprehensive spatiotemporal tension maps of tissues using broadly available
fluorescence imaging modalities.
利用内吞动力学获得完整的活细胞时空张力图
组织
项目摘要
组织中的张力与发育过程中的关键形态学变化以及病理学变化有关。
这些转化会引发心血管疾病和癌症转移。采用的流行技术,
量化细胞张力由于其侵入性而不适用于组织。这一技术差距是一个关键
生物医学研究的屏障,旨在阐明组织力学在疾病进展中的作用,
发育障碍
我们建议开发一种方法来量化细胞和组织内的张力,
表征主要细胞膜运输途径的张力反应:网格蛋白介导的
胞吞作用(CME)。我们之前的工作和前期实验表明,空间和时间变化
通过分析细胞中的CME动力学可以确定张力。我们建议,
张力与日冕物质抛射动力学之间的关系可以用来发展综合的时空
非侵入性地绘制生命系统的张力图。
在目标1中,我们将描述在不同细胞张力值下定义CME动力学的参数。我们
还将确定使用CME动力学开发的张力图的空间和时间分辨率。
在目标2中,我们将验证所提出的方法对活的多细胞组织的适用性。
有机体我们将使用果蝇胚胎发生作为模式发育生物。在目标3中,
我们将开发一个利用CME动力学生成张力图的软件平台。
我们设想这种高风险、高回报的方法将为生物医学研究提供一个重大飞跃,因为它
使用广泛可用的技术提供全面的组织时空张力图的无创组装
荧光成像模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Comert Kural其他文献
Comert Kural的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Comert Kural', 18)}}的其他基金
Dual-view Inverted Selective Plane Illumination (diSPIM) Light-sheet Microscopy
双视图倒置选择性平面照明 (diSPIM) 光片显微镜
- 批准号:
10390024 - 财政年份:2018
- 资助金额:
$ 34.21万 - 项目类别:
Utilizing Endocytic Dynamics to Obtain Comprehensive Spatiotemporal Tension Maps of Live Tissues
利用内吞动力学获得活组织的全面时空张力图
- 批准号:
9918922 - 财政年份:2018
- 资助金额:
$ 34.21万 - 项目类别:
Utilizing Endocytic Dynamics to Obtain Comprehensive Spatiotemporal Tension Maps of Live Tissues
利用内吞动力学获得活组织的全面时空张力图
- 批准号:
9753283 - 财政年份:2018
- 资助金额:
$ 34.21万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.21万 - 项目类别:
Continuing Grant