Rosie the Chatbot: Leveraging Automated and Personalized Health Information Communication to Reduce Disparities in Maternal and Child Health
聊天机器人 Rosie:利用自动化和个性化的健康信息通信来减少母婴健康差异
基本信息
- 批准号:10173272
- 负责人:
- 金额:$ 59.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnxietyAppointmentArtificial IntelligenceBack to SleepBehavioral SciencesBiometryBreastfed infantChildChildbirthColorCommunicationCommunitiesComplexComputer softwareDevelopmentDiscriminationEmergency department visitEnsureEpidemiologyExperimental DesignsFamilyFocus GroupsFriendsGeographyGoalsGrantHealthHealth ProfessionalHealth behaviorHome visitationHourImmunizationIndividualInfant MortalityInformaticsInternetInterventionKnowledgeLeftLibrariesMaternal MortalityMaternal and Child HealthMedicalMedicineMethodologyMethodsMisinformationMothersNatural Language ProcessingParticipantPopulationPostpartum DepressionPregnancyPreventiveProceduresPublic HealthQuality of lifeRandomizedRandomized Controlled TrialsResourcesRiskRoleSamplingTechnologyTestingText MessagingTimeUnderserved PopulationVisitVulnerable PopulationsWell Child VisitsWomanbasecare outcomeschatbotcheckup examinationcommunity cliniccomputer sciencecopingcostcost effectivedesigndisparity reductionethnic minority populationfamily supportflexibilityhealth care service organizationhealth disparityhealth organizationimprovedinfant nutritioninfant outcomematernal outcomenew technologyonline communityopen sourcepatient orientedpersonalized approachphrasespopulation basedprogramsprototyperacial and ethnicracial and ethnic disparitiesrecruitresponsescale upscreening guidelinesstressortoolvirtualweb page
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposal has the potential to alter the way health information is presented to vulnerable populations. Our
proposal promotes a more flexible and tailored approach to reach underserved groups. Racial/ethnic minority
women are at increased risk for postpartum depression, and their children as less likely to have had well-child
checkups in the past year. Moreover, racial/ethnic disparities are still prevalent for maternal and infant mortality
as well as various health behaviors such as safe sleep practices, breastfeeding, and infant nutrition. Currently,
some popular programs involve resource-intensive home visits (limited in scale due to staff and cost
constraints) or non-personalized text messages (may not directly address an individual’s questions). We
propose the development of a chatbot that addresses both of these possible limitations by representing a
scalable tool that can have widespread reach across geographies and is personalized and responsive to an
individual’s specific informational needs. We have built a prototype of the chatbot, Rosie, capable of engaging
in live question-and-answer sessions. Rosie is able to respond to 334 popular questions that new mothers may
have. Pretests with mother groups and Mary’s Center patients have showed a positive reception to the chatbot.
Over the course of the grant, we will leverage recent advances in natural language processing and the
emergence of efforts to aggregate massive amounts of health information, to assemble a comprehensive
health information library. We will further refine Rosie’s dialogue analyzer and response inference engine to
robustly recognize and respond to user’s questions in the various and complex ways they can phrase a
question. We will test the hypothesis that Rosie may lower risk of postpartum depression, decrease emergency
room visits, and increase attendance of well-baby visits. We will employ primarily a virtual recruitment strategy
to conduct a randomized controlled trial to evaluate the impact of this intervention on maternal and infant
outcomes. Our investigative team—comprised of experts in the field of epidemiology, computer science,
biostatistics, and maternal and child health experts—is uniquely suited to implement the study aims. Our
Specific Aims are: 1) Develop technology for a chatbot, Rosie, that will provide health informational support to
vulnerable mothers the moment they need it; 2) Evaluate the use of Rosie on maternal and infant outcomes;
and 3) Release an open-source packet for the construction of a chatbot. Rosie provides informational support
to vulnerable moms the moment they need it and safeguards new moms from misinformation that is common
on the web with the ultimate goal of closing the gap in maternal and infant outcomes. Results and tools
developed from this proposal can be utilized to inform population-based strategies to reduce health disparities
and improve health.
项目总结/摘要
这项建议有可能改变向弱势群体提供卫生信息的方式。我们
该提案提倡采取更灵活和更有针对性的办法,帮助得不到充分服务的群体。种族/族裔少数
妇女患产后抑郁症的风险增加,她们的孩子不太可能有健康的孩子。
去年的检查。此外,在孕产妇和婴儿死亡率方面,
以及各种健康行为,如安全睡眠习惯、母乳喂养和婴儿营养。目前,
一些受欢迎的项目涉及资源密集型的家访(由于人员和成本,规模有限
限制)或非个性化文本消息(可能无法直接解决个人的问题)。我们
我建议开发一个聊天机器人,通过代表一个
可扩展的工具,可以在不同的地理位置广泛使用,并且是个性化的,
个人的具体信息需求。我们已经建立了一个聊天机器人的原型,罗西,能够参与
在现场问答环节。罗西能够回答334个流行的问题,新妈妈可能会
有.对母亲团体和玛丽中心患者的预测试显示出对聊天机器人的积极接受。
在赠款的过程中,我们将利用自然语言处理的最新进展,
出现了努力汇集大量的健康信息,以汇集一个全面的
健康信息图书馆我们将进一步完善Rosie的对话分析器和响应推理引擎,
鲁棒地识别和响应用户的问题,在各种复杂的方式,他们可以短语,
问题我们将检验罗茜可能降低产后抑郁症的风险,
房间访问,并增加婴儿访问的出席率。我们将主要采用虚拟招聘策略
进行一项随机对照试验,以评估这种干预对母婴的影响,
结果。我们的调查团队由流行病学、计算机科学、
生物统计学和孕产妇和儿童健康专家,是唯一适合实现研究目标。我们
具体目标是:1)为聊天机器人Rosie开发技术,为以下人员提供健康信息支持:
在弱势母亲需要的时候提供帮助; 2)评估Rosie的使用对孕产妇和婴儿结局的影响;
以及3)发布用于构建聊天机器人的开源包。罗西提供信息支持
在脆弱的妈妈们需要的时候提供给她们,保护新妈妈们免受常见的错误信息的伤害。
最终目标是缩小母婴之间的差距。成果和工具
从这一建议中发展出来的信息可以用来为基于人口的战略提供信息,以减少健康差距
并改善健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Marie Aparicio其他文献
Elizabeth Marie Aparicio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Marie Aparicio', 18)}}的其他基金
Rosie the Chatbot: Leveraging Automated and Personalized Health Information Communication to Reduce Disparities in Maternal and Child Health
聊天机器人 Rosie:利用自动化和个性化的健康信息通信来减少母婴健康差异
- 批准号:
10495184 - 财政年份:2021
- 资助金额:
$ 59.76万 - 项目类别:
Rosie the Chatbot: Leveraging Automated and Personalized Health Information Communication to Reduce Disparities in Maternal and Child Health
聊天机器人 Rosie:利用自动化和个性化的健康信息通信来减少母婴健康差异
- 批准号:
10654862 - 财政年份:2021
- 资助金额:
$ 59.76万 - 项目类别:
Rosie the Chatbot: Leveraging Automated and Personalized Health Information Communication to Reduce Disparities in Maternal and Child Health
聊天机器人 Rosie:利用自动化和个性化的健康信息通信来减少母婴健康差异
- 批准号:
10908148 - 财政年份:2021
- 资助金额:
$ 59.76万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 59.76万 - 项目类别:
Research Grant














{{item.name}}会员




