Cell-intrinsic role of caspase-1 in regulating antigen-specific CD8+ T cell responses
Caspase-1 在调节抗原特异性 CD8 T 细胞反应中的细胞内在作用
基本信息
- 批准号:10171780
- 负责人:
- 金额:$ 21.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdaptor Signaling ProteinAddressAdoptive TransferAnatomyAntigensAntiviral AgentsBioenergeticsBiological AssayBrainCASP1 geneCD28 geneCD3 AntigensCD8-Positive T-LymphocytesCaspaseCell physiologyCellsCleaved cellComplexConsequentialismCuesCytosolEncephalitisEnzyme PrecursorsEpidemicGene Expression ProfilingHomingImmunityImmunologicsIn VitroInfectionInflammasomeInflammationInflammatoryInterleukin-1 betaInterleukin-18KineticsLinkMediatingMetabolismMitochondriaModelingMolecularNeuraxisNeuronal InjuryNeuronsOxidative PhosphorylationPhasePlayProductionReactive Oxygen SpeciesReceptor SignalingRegulationReportingResolutionRespirationRoleSignal TransductionSkinSpleenT cell responseT memory cellT-Cell ActivationT-Cell ReceptorT-Lymphocyte SubsetsTimeTissuesViralVirusVirus DiseasesVirus ReplicationWest Nile viral infectionWest Nile virusbasecytokinein vitro Assayin vivolymph nodesmosquito-bornemouse modelneurotropicnovelpreventprotein complex
项目摘要
ABSTRACT
Caspase-1 is an essential component of the inflammasome complex and is responsible for cleaving pro-
inflammatory cytokines IL-1β and IL-18 and initiating pyroptosis through cleavage of Gasdermin D. Using a
murine model of West Nile virus (WNV) infection, we and others have previously demonstrated the importance
of inflammasome signaling for promoting IL-1β-mediated protective immunity. We have now extended these
observations and discovered a novel, cell-intrinsic role for caspase-1 in regulating antigen-specific CD8+ T cells
responses during WNV infection. The absence of CD8+ T cells leads to uncontrolled WNV replication and
significant neuronal injury within the brain. To understand how environmental cues within the brain impact T cell
responses during WNV infection, we performed transcriptional profiling on antigen-specific CD8+ T cells isolated
from the spleen and brain at early and late times post-WNV infection. Through this analysis, we found that
caspase-1, as well as other inflammasome signaling components, were enriched within brain-resident antigen-
specific CD8+ T cells as compared to antigen-specific CD8+ T cells isolated from the spleen. We confirmed that
active caspase-1 is more abundantly expressed within brain-resident CD8+ T cells as compared to splenic CD8+
T cells. Using a co-adoptive transfer model, we observed increased antigen-specific Casp1-/- CD8+ T cells as
compared to WT CD8+ T cells within the spleen and brain during infection. Of note, CD8+ T cells are not infected
by WNV, suggesting that the activation of caspase-1 is independent of virus infection. Next, we characterized
caspase-1 function in vitro using an in vitro T cell receptor (TCR) stimulation assay and found that caspase-1 is
autoproteolytically cleaved following CD3/CD28 stimulation. Moreover, we found that ASC, but not NLRP3 or IL-
1β, is expressed in naïve and stimulated CD8+ T cells. Lastly, recent studies have linked caspase-1 with
mitochondrial function. Consistent with these observations, we found that αCD3/αCD28 primed Casp1-/- CD8+
T cells displayed enhanced oxidative phosphorylation as compared to WT CD8+ T cells, suggesting that
caspase-1 may regulate CD8+ T cell function by reprogramming mitochondrial dynamics and metabolism. Based
on these findings, we hypothesize that TCR stimulation of CD8+ T cells triggers caspase-1 activation, which
functions to limit T cell activation, mitochondrial bioenergetics, and cell expansion in a tissue-specific manner. In
turn, we believe that active caspase-1 is critically required for controlling virus replication within the CNS and
minimizing consequential neuronal damage by preventing an over-exuberant T cell response during viral
infection. To address this hypothesis, we have two specific aims: 1) How does caspase-1 mediate CD8+ T cell
responses during WNV infection? and 2) Aim 2. What are the molecular mechanisms of caspase-1 function
in activated CD8+ T cells? The completion of these aims will provide us with a broader understanding of the
underlying mechanisms by which caspase-1 regulates CD8+ T cells responses during virus infection.
摘要
Caspase-1是炎症体复合体的重要组成部分,负责裂解前...
炎性细胞因子IL-1、β和IL-18与裂解赤霉素D引起的下睑下垂
西尼罗河病毒(WNV)感染的小鼠模型,我们和其他人之前已经证明了重要性
炎症体信号转导促进IL-1β介导的保护性免疫。我们现在已经延长了这些
观察并发现了caspase-1在调节抗原特异性CD8+T细胞中的一种新的细胞内在作用
西尼罗河病毒感染期间的反应。CD8+T细胞的缺失导致WNV复制失控和
大脑内严重的神经元损伤。为了了解大脑中的环境线索如何影响T细胞
在西尼罗河病毒感染期间的反应,我们对分离的抗原特异性CD8+T细胞进行了转录图谱分析
在西尼罗河病毒感染后的早期和晚期从脾和脑中提取。通过这个分析,我们发现,
Caspase-1以及其他炎症体信号成分富含在脑驻留抗原中-
从脾中分离的特异性CD8+T细胞与抗原特异性CD8+T细胞的比较。我们确认了
与脾CD8+细胞相比,活性caspase-1在脑内CD8+T细胞中的表达更为丰富
T细胞。使用联合过继转移模型,我们观察到抗原特异性CASP1-/-CD8+T细胞增加
与WT相比,CD8+T细胞在感染期间存在于脾和脑内。值得注意的是,CD8+T细胞没有被感染
提示caspase-1的激活不依赖于病毒感染。接下来,我们描述了
利用体外T细胞受体(TCR)刺激实验发现caspase-1在体外发挥作用
CD3/CD28刺激后自身蛋白降解。此外,我们还发现ASC,而不是NLRP3或IL-
1β,在幼稚和刺激的CD8+T细胞中表达。最后,最近的研究将caspase-1与
线粒体功能。与这些观察结果一致,我们发现αCD3/αCD28启动了CASP1-/-CD8+
与WT CD8+T细胞相比,T细胞表现出更强的氧化磷酸化,这表明
Caspase-1可能通过重新编程线粒体动力学和代谢来调节CD8+T细胞的功能。基座
根据这些发现,我们假设CD8+T细胞的TCR刺激触发了caspase-1的激活,这是
以组织特有的方式限制T细胞激活、线粒体生物能量学和细胞扩张的功能。在……里面
反过来,我们认为激活的caspase-1对于控制CNS内的病毒复制和
通过防止病毒期间过度活跃的T细胞反应来最大限度地减少相应的神经元损伤
感染。为了解决这一假设,我们有两个具体的目标:1)caspase-1如何介导CD8+T细胞
西尼罗河病毒感染期间的反应?2)目的2.caspase-1作用的分子机制是什么
在激活的CD8+T细胞中?这些目标的实现将使我们对
Caspase-1在病毒感染过程中调节CD8+T细胞反应的潜在机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehul Shamal Suthar其他文献
Mehul Shamal Suthar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehul Shamal Suthar', 18)}}的其他基金
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10402864 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10058046 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10624960 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10189512 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Identifying host genetic determinants that regulate dendritic cell activation
识别调节树突状细胞激活的宿主遗传决定因素
- 批准号:
8893467 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Identifying host genetic determinants that regulate dendritic cell activation
识别调节树突状细胞激活的宿主遗传决定因素
- 批准号:
9094679 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Regulation of T cell immunity by the cytosolic RIG-I like receptors
胞质 RIG-I 样受体对 T 细胞免疫的调节
- 批准号:
8897470 - 财政年份:2014
- 资助金额:
$ 21.74万 - 项目类别:
Generation of MAVS conditional KO mice to study cell-type specific immunity
生成 MAVS 条件 KO 小鼠以研究细胞类型特异性免疫
- 批准号:
8787074 - 财政年份:2013
- 资助金额:
$ 21.74万 - 项目类别:
Generation of MAVS conditional KO mice to study cell-type specific immunity
生成 MAVS 条件 KO 小鼠以研究细胞类型特异性免疫
- 批准号:
8623700 - 财政年份:2013
- 资助金额:
$ 21.74万 - 项目类别:
Defining the host antiviral response to West Nile Virus
定义宿主对西尼罗河病毒的抗病毒反应
- 批准号:
7980162 - 财政年份:2009
- 资助金额:
$ 21.74万 - 项目类别:














{{item.name}}会员




