Cell-intrinsic role of caspase-1 in regulating antigen-specific CD8+ T cell responses
Caspase-1 在调节抗原特异性 CD8 T 细胞反应中的细胞内在作用
基本信息
- 批准号:10171780
- 负责人:
- 金额:$ 21.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdaptor Signaling ProteinAddressAdoptive TransferAnatomyAntigensAntiviral AgentsBioenergeticsBiological AssayBrainCASP1 geneCD28 geneCD3 AntigensCD8-Positive T-LymphocytesCaspaseCell physiologyCellsCleaved cellComplexConsequentialismCuesCytosolEncephalitisEnzyme PrecursorsEpidemicGene Expression ProfilingHomingImmunityImmunologicsIn VitroInfectionInflammasomeInflammationInflammatoryInterleukin-1 betaInterleukin-18KineticsLinkMediatingMetabolismMitochondriaModelingMolecularNeuraxisNeuronal InjuryNeuronsOxidative PhosphorylationPhasePlayProductionReactive Oxygen SpeciesReceptor SignalingRegulationReportingResolutionRespirationRoleSignal TransductionSkinSpleenT cell responseT memory cellT-Cell ActivationT-Cell ReceptorT-Lymphocyte SubsetsTimeTissuesViralVirusVirus DiseasesVirus ReplicationWest Nile viral infectionWest Nile virusbasecytokinein vitro Assayin vivolymph nodesmosquito-bornemouse modelneurotropicnovelpreventprotein complex
项目摘要
ABSTRACT
Caspase-1 is an essential component of the inflammasome complex and is responsible for cleaving pro-
inflammatory cytokines IL-1β and IL-18 and initiating pyroptosis through cleavage of Gasdermin D. Using a
murine model of West Nile virus (WNV) infection, we and others have previously demonstrated the importance
of inflammasome signaling for promoting IL-1β-mediated protective immunity. We have now extended these
observations and discovered a novel, cell-intrinsic role for caspase-1 in regulating antigen-specific CD8+ T cells
responses during WNV infection. The absence of CD8+ T cells leads to uncontrolled WNV replication and
significant neuronal injury within the brain. To understand how environmental cues within the brain impact T cell
responses during WNV infection, we performed transcriptional profiling on antigen-specific CD8+ T cells isolated
from the spleen and brain at early and late times post-WNV infection. Through this analysis, we found that
caspase-1, as well as other inflammasome signaling components, were enriched within brain-resident antigen-
specific CD8+ T cells as compared to antigen-specific CD8+ T cells isolated from the spleen. We confirmed that
active caspase-1 is more abundantly expressed within brain-resident CD8+ T cells as compared to splenic CD8+
T cells. Using a co-adoptive transfer model, we observed increased antigen-specific Casp1-/- CD8+ T cells as
compared to WT CD8+ T cells within the spleen and brain during infection. Of note, CD8+ T cells are not infected
by WNV, suggesting that the activation of caspase-1 is independent of virus infection. Next, we characterized
caspase-1 function in vitro using an in vitro T cell receptor (TCR) stimulation assay and found that caspase-1 is
autoproteolytically cleaved following CD3/CD28 stimulation. Moreover, we found that ASC, but not NLRP3 or IL-
1β, is expressed in naïve and stimulated CD8+ T cells. Lastly, recent studies have linked caspase-1 with
mitochondrial function. Consistent with these observations, we found that αCD3/αCD28 primed Casp1-/- CD8+
T cells displayed enhanced oxidative phosphorylation as compared to WT CD8+ T cells, suggesting that
caspase-1 may regulate CD8+ T cell function by reprogramming mitochondrial dynamics and metabolism. Based
on these findings, we hypothesize that TCR stimulation of CD8+ T cells triggers caspase-1 activation, which
functions to limit T cell activation, mitochondrial bioenergetics, and cell expansion in a tissue-specific manner. In
turn, we believe that active caspase-1 is critically required for controlling virus replication within the CNS and
minimizing consequential neuronal damage by preventing an over-exuberant T cell response during viral
infection. To address this hypothesis, we have two specific aims: 1) How does caspase-1 mediate CD8+ T cell
responses during WNV infection? and 2) Aim 2. What are the molecular mechanisms of caspase-1 function
in activated CD8+ T cells? The completion of these aims will provide us with a broader understanding of the
underlying mechanisms by which caspase-1 regulates CD8+ T cells responses during virus infection.
抽象的
Caspase-1 是炎症小体复合物的重要组成部分,负责裂解亲
炎症细胞因子 IL-1β 和 IL-18 并通过切割 Gasdermin D 启动细胞焦亡。
西尼罗河病毒(WNV)感染的小鼠模型,我们和其他人之前已经证明了重要性
炎症体信号转导促进 IL-1β 介导的保护性免疫。我们现在已经扩展了这些
观察并发现了 caspase-1 在调节抗原特异性 CD8+ T 细胞中的新的细胞内在作用
西尼罗河病毒感染期间的反应。 CD8+ T 细胞的缺失会导致 WNV 复制不受控制,
大脑内明显的神经元损伤。了解大脑内的环境线索如何影响 T 细胞
为了了解西尼罗河病毒感染期间的反应,我们对分离的抗原特异性 CD8+ T 细胞进行了转录分析
西尼罗河病毒感染后早期和晚期来自脾脏和大脑。通过本次分析,我们发现
caspase-1 以及其他炎症小体信号传导成分在大脑驻留抗原中富集
特异性 CD8+ T 细胞与从脾脏分离的抗原特异性 CD8+ T 细胞相比。我们确认
与脾脏 CD8+ 相比,活性 caspase-1 在大脑驻留 CD8+ T 细胞中表达更丰富
T细胞。使用共收养转移模型,我们观察到抗原特异性 Casp1-/- CD8+ T 细胞增加
与感染期间脾脏和大脑内的 WT CD8+ T 细胞相比。值得注意的是,CD8+ T 细胞没有被感染
由 WNV 发现,表明 caspase-1 的激活与病毒感染无关。接下来,我们表征了
使用体外 T 细胞受体 (TCR) 刺激测定法在体外发挥 caspase-1 的功能,发现 caspase-1 是
CD3/CD28 刺激后发生自蛋白水解。此外,我们发现 ASC,而不是 NLRP3 或 IL-
1β,在幼稚和刺激的 CD8+ T 细胞中表达。最后,最近的研究将 caspase-1 与
线粒体功能。与这些观察结果一致,我们发现 αCD3/αCD28 引发了 Casp1-/- CD8+
与 WT CD8+ T 细胞相比,T 细胞表现出增强的氧化磷酸化,表明
caspase-1 可能通过重编程线粒体动力学和代谢来调节 CD8+ T 细胞功能。基于
根据这些发现,我们假设 TCR 刺激 CD8+ T 细胞会触发 caspase-1 激活,从而
以组织特异性方式限制 T 细胞激活、线粒体生物能和细胞扩增。在
反过来,我们认为活性 caspase-1 对于控制中枢神经系统内的病毒复制至关重要,并且
通过防止病毒感染过程中过度旺盛的 T 细胞反应,最大限度地减少随之而来的神经元损伤
感染。为了解决这个假设,我们有两个具体目标:1)caspase-1如何介导CD8+T细胞
西尼罗河病毒感染期间的反应? 2) 目标 2. caspase-1 功能的分子机制是什么
激活的 CD8+ T 细胞?这些目标的完成将使我们对
caspase-1 在病毒感染期间调节 CD8+ T 细胞反应的潜在机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehul Shamal Suthar其他文献
Mehul Shamal Suthar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehul Shamal Suthar', 18)}}的其他基金
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10402864 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10058046 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10624960 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Understanding the mechanisms of antibody-mediated transcytosis of ZIKV within the placenta
了解胎盘内抗体介导的 ZIKV 转胞吞作用机制
- 批准号:
10189512 - 财政年份:2020
- 资助金额:
$ 21.74万 - 项目类别:
Identifying host genetic determinants that regulate dendritic cell activation
识别调节树突状细胞激活的宿主遗传决定因素
- 批准号:
8893467 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Identifying host genetic determinants that regulate dendritic cell activation
识别调节树突状细胞激活的宿主遗传决定因素
- 批准号:
9094679 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Regulation of T cell immunity by the cytosolic RIG-I like receptors
胞质 RIG-I 样受体对 T 细胞免疫的调节
- 批准号:
8897470 - 财政年份:2014
- 资助金额:
$ 21.74万 - 项目类别:
Generation of MAVS conditional KO mice to study cell-type specific immunity
生成 MAVS 条件 KO 小鼠以研究细胞类型特异性免疫
- 批准号:
8787074 - 财政年份:2013
- 资助金额:
$ 21.74万 - 项目类别:
Generation of MAVS conditional KO mice to study cell-type specific immunity
生成 MAVS 条件 KO 小鼠以研究细胞类型特异性免疫
- 批准号:
8623700 - 财政年份:2013
- 资助金额:
$ 21.74万 - 项目类别:
Defining the host antiviral response to West Nile Virus
定义宿主对西尼罗河病毒的抗病毒反应
- 批准号:
7980162 - 财政年份:2009
- 资助金额:
$ 21.74万 - 项目类别:














{{item.name}}会员




