Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
基本信息
- 批准号:10171921
- 负责人:
- 金额:$ 24.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAcademic Medical CentersAddressAdultAdvance DirectivesAmericanAnxietyAreaAwardBehavioralBiologicalChronicChronic Obstructive Airway DiseaseClinicalClinical DataClinical ManagementClinical assessmentsCluster AnalysisCodeCompetenceComplementDataData AnalysesData ScienceData SetData StoreDepressed moodDetectionDevelopmentDiagnosisDyspneaElectronic Health RecordEquipment and supply inventoriesEthnic OriginFatigueFundingFutureGeneticGenomicsGoalsHealth Care CostsHealth PromotionHealthcare SystemsHeart failureImpaired cognitionInformaticsInterventionKnowledgeKnowledge acquisitionLaboratoriesLeadLifeLiteratureMachine LearningMalignant NeoplasmsMastectomyMedical GeneticsMedical centerMentorshipModelingNatural Language ProcessingNauseaNausea and VomitingNeurobehavioral ManifestationsNon-Insulin-Dependent Diabetes MellitusOncologyPainPathologicPatientsPharmaceutical PreparationsPhasePostoperative Nausea and VomitingProceduresProteomicsPruritusPublic HealthQuality of lifeRaceReproducibilityResearchResearch PersonnelResourcesRisk FactorsScienceScientistSigns and SymptomsSleep disturbancesStrategic PlanningStructureSymptomsTechniquesTimeTrainingUnited States National Institutes of HealthUniversitiesValidationWomanWorkXerostomiabasebiomarker discoverybiomedical informaticscareercareer developmentclinical data warehouseclinical practiceclinical predictorsclinical translationclinically relevantcohortcomputerized data processingdata analysis pipelinedata miningdata visualizationdata warehouseelectronic dataexperiencehealth care service utilizationhealth datainnovationknowledge translationmalignant breast neoplasmpatient orientedpre-doctoralprocess optimizationprogramssociodemographicsstatisticssymptom clustersymptom managementsymptom sciencesymptomatic improvementunsupervised learning
项目摘要
Despite their adverse impact on patient quality of life and healthcare utilization and costs, symptom clusters
(SCs) in common adult chronic conditions such as cancer, heart failure (HF), type 2 diabetes mellitus (T2DM),
and chronic obstructive pulmonary disease (COPD) are understudied and poorly understood. The lack of
access to real world, longitudinal patient symptom data sets and inability to adequately model the complexity of
SCs has greatly limited research. Based on our previous work, we propose that these gaps can be addressed
in an innovative way using electronic health records (EHRs) and data science techniques. Our overall objective
is to develop, apply and refine, and implement an optimized data processing and analysis pipeline for the
characterization of SCs in common adult chronic conditions for use with EHR data. We hypothesize that a core
set of SCs is shared among all common adult chronic conditions and that distinct SCs characterize specific
conditions and/or treatments. The long term training goal of this project is to assist Dr. Koleck in becoming an
independent investigator conducting a program of research dedicated to mitigating symptom burden in patients
with chronic conditions through use of informatics and omics (e.g., genomics and proteomics), the focus of her
pre-doctoral work. Using exceptional resources available from Columbia University, the K99 phase of this
project will focus on the development of a rigorous pipeline; essential competencies in SC analysis and
interpretation; and the data science techniques of clinical data mining, natural language processing, machine
learning, and data visualization. In the R00 phase, Dr. Koleck will independently implement the pipeline in
another medical center to determine the reproducibility of identified SCs and begin to explore clinical predictors
(e.g., socio-demographics, laboratory results, and medications) of SCs. The specific aims are to 1) develop a
data-driven pipeline for the characterization of SCs from EHRs using a cohort of adult patients diagnosed with
cancer, as SCs have been most systematically characterized in this condition; 2) apply the pipeline to three
other common adult chronic conditions that share biological and behavioral risk factors with cancer, i.e., HF,
T2DM, and COPD, and evaluate SCs in these conditions; and 3) determine if SCs differ for cancer, HF, T2DM,
and COPD when implementing the pipeline within another medical center and explore clinically relevant, EHR-
documented predictors of identified SCs. To accomplish research aims and training goals, an interdisciplinary
team of scientists with expertise in symptom science, biomedical informatics, data science, pertinent clinical
domains, and career development mentorship has been assembled. This research is significant because a
pipeline that accommodates the format in which symptom data is already being documented in EHRs has the
potential to greatly accelerate the acquisition of SC knowledge and expedite clinical translation of symptom
mitigation strategies. Given the array of new competencies to be developed, this K99/R00 award is necessary
for achieving the candidate’s career goal of advancing chronic condition symptom science.
尽管它们对患者的生活质量和医疗保健的利用和成本产生不利影响,症状群集
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theresa Ann Koleck其他文献
Theresa Ann Koleck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theresa Ann Koleck', 18)}}的其他基金
Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
- 批准号:
10394724 - 财政年份:2018
- 资助金额:
$ 24.14万 - 项目类别:
Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
- 批准号:
10118580 - 财政年份:2018
- 资助金额:
$ 24.14万 - 项目类别:
Cognitive Function and Breast Cancer: Genomics and Disease Characteristics
认知功能与乳腺癌:基因组学和疾病特征
- 批准号:
8975551 - 财政年份:2013
- 资助金额:
$ 24.14万 - 项目类别:
Cognitive Function and Breast Cancer: Genomics and Disease Characteristics
认知功能与乳腺癌:基因组学和疾病特征
- 批准号:
8589850 - 财政年份:2013
- 资助金额:
$ 24.14万 - 项目类别:
相似海外基金
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9212055 - 财政年份:2016
- 资助金额:
$ 24.14万 - 项目类别:
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9348616 - 财政年份:2016
- 资助金额:
$ 24.14万 - 项目类别:
A CONFERENCE ON THE 'CRISIS' OF ACADEMIC MEDICAL CENTERS
关于学术医疗中心“危机”的会议
- 批准号:
6335654 - 财政年份:2000
- 资助金额:
$ 24.14万 - 项目类别: