Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
基本信息
- 批准号:10173503
- 负责人:
- 金额:$ 13.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAccident and Emergency departmentAdministrative SupplementAdultAdult Respiratory Distress SyndromeAffectAlcohol or Other Drugs useArtificial IntelligenceBehavioralCOVID-19COVID-19 pandemicCaringChronicCitiesClinicalClinical DataClinical Trials NetworkCommunitiesComplexComputing MethodologiesConsumptionContractsDataData PoolingData SetDetectionDevelopmentDiabetes MellitusDisastersDrug abuseDrug usageEarly treatmentElectronic Health RecordEnsureEpidemicEquipmentFelis catusGeneral PopulationHealthHealth ServicesHealth StatusHealth systemHeart DiseasesHome environmentHomelessnessHospitalizationHospitalsHurricaneHypertensionIllicit DrugsIndividualLabelMachine LearningManualsMedicalMental HealthMethodsModelingNamesNatural Language ProcessingOutcomeOverdosePatientsPerformancePharmaceutical PreparationsPovertyPreventionPublic HealthRadiology SpecialtyReportingResearchResourcesRespiratory FailureRespiratory Tract InfectionsRiskRisk FactorsRisk stratificationSemanticsSensitivity and SpecificitySocial supportSourceStandardizationSterilitySubstance Use DisorderSyndromeTestingTrainingTreatment outcomeTriageValidationVirusVisitVulnerable PopulationsWithdrawalWorkbehavioral healthcohortcomorbiditycoronavirus diseasedigitaldrug marketexperiencehigh riskimprovedindividual patientinteroperabilitymachine learning methodmarijuana usemortality risknon-opioid analgesicnovelopioid misuseoverdose deathpandemic diseasepredictive modelingprognosticscreeningsocialsocial exclusionsocial stigmasocioeconomicssubstance misusesuccesstooltransmission processunstructured data
项目摘要
PROJECT SUMMARY
Individuals with substance use disorders are disproportionately experiencing homelessness, poverty,
and chronic medical conditions (diabetes and hypertension), which are emerging risk factors for contracting
SARS-CoV-2 (official name for the virus that causes COVID-19). Different types of substance use have been
associated with development of respiratory infections and progression to severe respiratory failure, also known
as Acute Respiratory Distress Syndrome (ARDS). However, complex syndromes like ARDS and behavioral
conditions like substance misuse are difficult to identify from the electronic health record. Clinical notes and
radiology reports provide a rich source of information that may be used to identify cases of substance misuse
and ARDS. This information is routinely recorded during hospital care, and automated, data-driven solutions
with natural language processing (NLP) can extract semantics and important risk factors from the unstructured
data of clinical notes. The computational methods of NLP derive meaning from clinical notes, from which
machine learning can predict risk factors for patients leaving AMA or progressing to respiratory failure. Our
team developed tools with >80% sensitivity/specificity to identify individual types of substance misuse using
NLP with machine learning (ML). Our single-center models delineated risk factors embedded in the notes (e.g.,
mental health conditions, socioeconomic indicators). Further, we have developed and externally validated a
machine learning tool to identify cases of ARDS with high accuracy for early treatment. We aim to expand this
work by pooling data across health systems and build a generalizable and comprehensive classifier that
captures multiple types of substance misuse for use in risk stratification and prognostication during the COVID
pandemic.
We hypothesize that a single-model NLP substance misuse classifier will provide a standardized,
interoperable, and accurate approach for universal analysis of hospitalized patients, and that such information
can be used to identify those at risk for disrupted care and those at risk for respiratory failure. We aim to train
and test our substance misuse classifiers at Rush in a retrospective dataset of over 60,000 hospitalizations
that have been manually screened with the universal screen, AUDIT, and DAST. This Administrative
Supplement will allow us to examine the correlations between substances of misuse and risk for COVID-19 as
well as development of Acute Respiratory Distress Syndrome (ARDS) in the context of these phenomena.
项目总结
患有药物使用障碍的人不成比例地经历着无家可归、贫困、
和慢性疾病(糖尿病和高血压),这是新出现的感染风险因素
SARS-CoV-2(引起新冠肺炎的病毒的正式名称)。不同类型的物质使用
与呼吸道感染的发展和发展为严重的呼吸衰竭有关,也称为
即急性呼吸窘迫综合征(ARDS)。然而,复杂的症状,如ARDS和行为
像药物滥用这样的情况很难从电子健康记录中识别出来。临床记录和
放射学报告提供了丰富的信息来源,可用于识别药物滥用病例
还有ARDS。在医院护理和自动化、数据驱动的解决方案期间,这些信息会被常规记录
利用自然语言处理(NLP)可以从非结构化的数据中提取语义和重要的风险因素
临床病历数据。NLP的计算方法从临床笔记中获得含义,从中
机器学习可以预测患者离开AMA或进展为呼吸衰竭的危险因素。我们的
团队开发了具有80%敏感度/特异度的工具来识别个别类型的物质滥用
具有机器学习(ML)的NLP。我们的单中心模型描述了嵌入在笔记中的风险因素(例如,
精神健康状况、社会经济指标)。此外,我们还开发了一个经过外部验证的
机器学习工具,以高精度识别ARDS病例,以便早期治疗。我们的目标是扩大这一领域
通过跨医疗系统共享数据进行工作,并构建可推广的全面分类器
捕获多种类型的物质滥用,用于冠状病毒感染期间的风险分层和预测
大流行。
我们假设,单一模型的NLP物质滥用分类器将提供标准化的、
对住院患者进行普遍分析的可互操作和准确的方法,以及这些信息
可用于识别那些面临中断护理风险的人和那些面临呼吸衰竭风险的人。我们的目标是培训
并在Rush的60,000多例住院的回顾数据集中测试我们的物质滥用分类器
已使用Universal Screen、AUDIT和DAST进行了手动筛选。此管理
补充剂将使我们能够检查滥用物质与新冠肺炎风险之间的相关性,因为
以及在这些现象背景下的急性呼吸窘迫综合征(ARDS)的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID H GUSTAFSON其他文献
DAVID H GUSTAFSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID H GUSTAFSON', 18)}}的其他基金
Family-focused vs. Drinker-focused Smartphone Interventions to Reduce Drinking-related Consequences of COVID-19
以家庭为中心与以饮酒者为中心的智能手机干预措施可减少与饮酒相关的 COVID-19 后果
- 批准号:
10363458 - 财政年份:2021
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Displays to Implement an Evidence-Based eHealth System for Older Adults with Multiple Chronic Conditions
使用智能显示器为患有多种慢性病的老年人实施循证电子医疗系统
- 批准号:
10467353 - 财政年份:2021
- 资助金额:
$ 13.98万 - 项目类别:
Family-focused vs. Drinker-focused Smartphone Interventions to Reduce Drinking-related Consequences of COVID-19
以家庭为中心与以饮酒者为中心的智能手机干预措施可减少与饮酒相关的 COVID-19 后果
- 批准号:
10700053 - 财政年份:2021
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Displays to Implement an Evidence-Based eHealth System for Older Adults with Multiple Chronic Conditions
使用智能显示器为患有多种慢性病的老年人实施循证电子医疗系统
- 批准号:
10673770 - 财政年份:2021
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Devices to Implement an Evidence-based eHealth System for Older Adults
使用智能设备为老年人实施循证电子医疗系统
- 批准号:
10457324 - 财政年份:2020
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Devices to Implement an Evidence-based eHealth System for Older Adults
使用智能设备为老年人实施循证电子医疗系统
- 批准号:
10224617 - 财政年份:2020
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Devices to Implement an Evidence-based eHealth System for Older Adults
使用智能设备为老年人实施循证电子医疗系统
- 批准号:
10024258 - 财政年份:2020
- 资助金额:
$ 13.98万 - 项目类别:
Using Smart Devices to Implement an Evidence-based eHealth System for Older Adults
使用智能设备为老年人实施循证电子医疗系统
- 批准号:
10669650 - 财政年份:2020
- 资助金额:
$ 13.98万 - 项目类别:
Testing of a patient-centered e-health implementation model in addiction treatment
成瘾治疗中以患者为中心的电子医疗实施模型的测试
- 批准号:
10434016 - 财政年份:2018
- 资助金额:
$ 13.98万 - 项目类别:
Building and pilot testing a couples-based smartphone systems to address alcohol use disorder
构建并试点测试基于情侣的智能手机系统以解决酒精使用障碍问题
- 批准号:
9770732 - 财政年份:2018
- 资助金额:
$ 13.98万 - 项目类别:














{{item.name}}会员




