Elucidating the network design principles of biological signal processing
阐明生物信号处理的网络设计原理
基本信息
- 批准号:10174953
- 负责人:
- 金额:$ 37.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAwarenessBiologicalCell physiologyCellsComplexDecision MakingDiseaseEnvironmentHumanKineticsKnowledgeMicrobeMicrofluidicsMitogen-Activated Protein KinasesMitogensModelingOrganismPathway interactionsPhosphotransferasesProcessPropertyProteinsRegulationResearchSaccharomyces cerevisiaeSaccharomycetalesSignal PathwaySignal TransductionSoilSpecificityStimulusStressSystemYeastsbiological adaptation to stressdesignexperimental studyextracellularmathematical modeloptogeneticsprogramsresponsesensorsignal processingtechnology developmenttooltranscription factor
项目摘要
Project Summary
Cells live in diverse environments, from the cells in our bodies to single-celled organisms surviving in the soil.
In order to navigate these complex environments, cells must be able to sense and respond to a variety of
signals. This is done through biological signaling pathways, consisting of sensors and interacting proteins,
which process external signals and transmit information. My research program focuses on understanding how
these biological networks transmit information about the environment to the activity of intracellular effectors,
such as transcription factors, to generate an appropriate cellular response or state. Understanding this signal
processing represents a key gap in our knowledge of how healthy and diseased cells make decisions in
response to stimuli. Specifically, we ask (1) How do signaling networks transform extracellular signals into
appropriate intracellular signals? and (2) How are intracellular signals interpreted by the cell to generate
appropriate responses?
My research uses Saccharomyces cerevisiae, or budding yeast, as a model organism for addressing these
questions in biological signal processing. Budding yeast exists as a unicellular microbe and therefore must be
exquisitely aware of its environment in order to survive and compete with neighboring cells. Our research is
focused on understanding signaling specificity and kinetics in the mitogen-activated kinase (MAPK) pathways
as well as transcription factor regulation in response to environmental stress. MAP kinase pathways are
conserved from yeast to humans and control vital cellular processes including proliferation, differentiation, and
stress response. Furthermore, we have developed and continue to develop exquisite tools for controlling and
perturbing biological networks in Saccharomyces cerevisiae, making this an ideal system in which to address
the aforementioned questions.
We take a multi-pronged approach. We develop microfluidic and optogenetic tools to perturb signaling
pathways and combine these perturbations with mathematical modeling to understanding how different
properties of signaling pathways, including bandwidth and crosstalk, allow them to appropriately transform their
input signals. Furthermore, we use these tools to drive dynamics of intracellular effectors, such as transcription
factors, and ask how these different effector dynamics generate cellular responses.
项目摘要
细胞生活在不同的环境中,从我们体内的细胞到土壤中生存的单细胞生物。
为了在这些复杂的环境中导航,细胞必须能够感知和响应各种各样的信号。
信号.这是通过生物信号通路完成的,由传感器和相互作用的蛋白质组成,
其处理外部信号并传输信息。我的研究项目集中在了解
这些生物网络将关于环境的信息传递给细胞内效应物的活性,
例如转录因子,以产生适当的细胞应答或状态。理解这个信号
处理代表了我们对健康和病变细胞如何做出决策的知识中的一个关键差距,
对刺激的反应。具体来说,我们问(1)信号网络如何将细胞外信号转化为
合适的细胞内信号?以及(2)细胞如何解释细胞内信号以产生
适当的回应?
我的研究使用酿酒酵母,或芽殖酵母,作为解决这些问题的模式生物。
生物信号处理中的问题。芽殖酵母作为单细胞微生物存在,因此必须
对周围环境有着敏锐的感知,以便生存并与邻近的细胞竞争。我们的研究是
专注于理解丝裂原活化激酶(MAPK)通路中的信号特异性和动力学
以及响应环境胁迫的转录因子调节。MAP激酶途径是
从酵母到人类都是保守的,控制着重要的细胞过程,包括增殖、分化和
应激反应此外,我们已经开发并将继续开发用于控制和
扰乱酿酒酵母中的生物网络,使其成为解决
上述问题。
我们采取多管齐下的方法。我们开发微流体和光遗传学工具来干扰信号传导
联合收割机将这些扰动与数学建模相结合,
信号通路的特性,包括带宽和串扰,使它们能够适当地转换它们的
输入信号。此外,我们使用这些工具来驱动细胞内效应物的动力学,例如转录
因子,并询问这些不同的效应动力学如何产生细胞反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan N McClean其他文献
Engineered bacteria self-organize to sense pressure
工程细菌自我组织以感知压力
- DOI:
10.1038/nbt.3992 - 发表时间:
2017-10-09 - 期刊:
- 影响因子:41.700
- 作者:
Neydis Moreno Morales;Megan N McClean - 通讯作者:
Megan N McClean
Megan N McClean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan N McClean', 18)}}的其他基金
Elucidating the network design principles of biological signal processing
阐明生物信号处理的网络设计原理
- 批准号:
10440537 - 财政年份:2018
- 资助金额:
$ 37.61万 - 项目类别:
Elucidating the network design principles of biological signal processing
阐明生物信号处理的网络设计原理
- 批准号:
10580291 - 财政年份:2018
- 资助金额:
$ 37.61万 - 项目类别:
Elucidating the network design principles of biological signal processing
阐明生物信号处理的网络设计原理
- 批准号:
10622254 - 财政年份:2018
- 资助金额:
$ 37.61万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists