SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
基本信息
- 批准号:10180356
- 负责人:
- 金额:$ 36.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-13 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgreementAnalgesicsBiologicalBiologyCD4 Lymphocyte CountCar PhoneCharacteristicsChemical EngineeringChronic DiseaseClassificationCustomDataData ScienceDevelopmentDifferential EquationDocumentationEducational BackgroundEventFinancial costFutureGoalsGrowthHIVHospitalizationHybridsInterventionKnowledgeLiteratureMachine LearningMathematicsMedicalMedical DeviceMethodsMicrobiologyMiningModelingNamesOptimum PopulationsPainPatientsPharmaceutical PreparationsPlayPrincipal InvestigatorProcessReportingResearchRoleScienceSickle Cell AnemiaSourceStatistical Data InterpretationStatistical ModelsStreamSystemTimeTreatment EffectivenessTreatment ProtocolsViral Load resultVisitacute carebasebiological systemsbiomedical data sciencechronic paincomparativedata streamsdynamic systemfollow-uphealth managementhuman diseaseindividual patientinsightintervention costmathematical modelmathematical sciencesmedical complicationmobile applicationmobile computingneural networkpatient populationprecision medicinepredictive modelingprogramsreadmission ratesresearch and developmentstatisticstheoriestool
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Abrams, Daniel, M
Project Description
1. Intellectual merit
(see Sec. 2, pages 13-14, for "Broader impacts")
1.1 Introduction and background
1.1.1 General introduction
During recent decades there has been an extraordinary growth in the availability of data relating
to a wide range of microbiological systems. That data has enabled new quantitative approaches
to biology, including the development of new mathematical and statistical models that given fun-
damental insight into the workings of biological systems.
Another source is now growing explosively: biomedical data. This data has significant potential
for use in treatment of human disease, but thus far comparatively fewer mathematical models for
medical phenomena have been developed. The hope is that quantitative models will allow for
"personalized" or "precision" medicine, where treatment protocols are customized based on an
understanding of how individual patient characteristics impact the effectiveness of the treatment.
Deep mathematical understanding of biomedical systems also promises to allow for optimization
of medical interventions: the physical and/or financial costs of intervention could be minimized for
a given desired level of benefit.
The broad goal of the proposed research is to develop new integrative mathematical models for
the dynamics of subjective pain in patients suffering from chronic pain. These models will combine
existing qualitative knowledge with insight gained from newly available patient data, with the goal
of incorporating data streams corning on line in the near future. We plan to develop multiple models
in parallel using a variety of approaches and then to select the best rnodel(s) based on agreement
with objective data.
1.1.2 Background on biological application: Sickle cell disease
Sickle cell disease (SCD) is a chronic illness associated with frequent medical complications and
hospitalizations. Approximately 90% of acute care visits are for pain events, and 30-day reuti-
lization rates are alarmingly high [27]. While factors influenci.ng these high re-utilization rates are
poorly understood, close follow-up and continued use of pain medication has been shown to de-
crease re-hospitalization rates. Mobile technology has become an integral part of health care
management and Pl Shah's recently developed mobile application (SMART app - see Figure 1)
for SCD assists with documentation of pain and interventions.
1.1.3 Background on hybrid approach
Perhaps because of the often distinct educational backgrounds of practitioners or distinct typical
applications, statistical and mechanistic approaches are not frequently combined in addressing a
single problem. The majority of attempts in the scientific literature have appeared in the context
of neural networks [37, 38, 29] and chemical engineering [38, 33, 11], where they largely play
a computational rather than analytical role. Some attempts have also been made with medical
applications: Rosenberg et al. [30] and Adams et al. [4] developed a model by combining a dy-
namical systems approach with a statistical model to predict a patient's CD4 cell counts and HIV
viral load over time in an HIV study. Timms et al. [39] proposed a dynamical systems approach
1
0MB No. 0925-0001/0002 (Rev. 01/18 Approved Through 03/31/2020) Page_ Continuation Format Page
项目主任/首席调查员(最后、第一、中间):艾布拉姆斯,丹尼尔,M
项目说明
1.智力方面的优点
(参见第节。2,第13-14页,“更广泛的影响”)
1.1导言和背景
1.1.1一般介绍
近几十年来,与此相关的数据的可用性有了惊人的增长。
广泛的微生物系统。这些数据使新的量化方法成为可能
到生物学,包括新的数学和统计模型的发展,这些模型带来了乐趣-
对生物系统工作原理的基本洞察。
另一个来源现在正在爆炸性地增长:生物医学数据。这些数据有很大的潜力
用于治疗人类疾病,但到目前为止,相对较少的数学模型
医学现象已经发展起来了。人们希望量化模型将允许
“个性化”或“精准”医学,其中治疗方案是基于
了解患者个体特征如何影响治疗效果。
对生物医学系统的深入数学理解也有望实现最优化
医疗干预:可将干预的实物和/或财务成本降至最低
给定的期望收益水平。
拟议研究的主要目标是开发新的综合数学模型
慢性疼痛患者主观疼痛的动态变化。这些模式将结合在一起
从新获得的患者数据中获得的具有洞察力的现有定性知识,目标是
在不久的将来将数据流整合到康宁公司。我们计划开发多种型号
同时使用多种方法,然后在协议的基础上选出最好的Rnodel(S
有客观的数据。
1.1.2生物应用背景:镰状细胞病
镰状细胞病(SCD)是一种慢性疾病,与频繁的内科并发症和
住院治疗。约90%的急性护理就诊是针对疼痛事件,30天重复-
市民化率高得惊人[27]。而影响这些高再利用率的因素有
缺乏了解、密切随访和持续使用止痛药已被证明会降低
提高再住院率。移动技术已成为医疗保健不可或缺的一部分
管理和Pl Shah最近开发的移动应用程序(智能应用程序-参见图1)
因为SCD协助记录疼痛和干预措施。
1.1.3关于混合方法的背景
也许是因为从业者的教育背景往往截然不同或典型的截然不同
应用程序、统计方法和机械方法在解决
只有一个问题。科学文献中的大多数尝试都出现在
神经网络[37,38,29]和化学工程[38,33,11],它们在这些领域发挥着重要作用
计算而不是分析的角色。还进行了一些尝试,如医疗保健
应用:Rosenberg等人。[30]和亚当斯等人。[4]开发了一种模型,该模型结合了一个模型和一个模型。
临床系统采用统计模型来预测患者的CD4细胞计数和HIV
一项艾滋病毒研究中的病毒载量随时间的变化。蒂姆斯等人。[39]提出了一种动态系统方法
1
0MB编号0925-0001/0002(01/18版批准至2020年3月31日)页面_延续格式页面
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel M Abrams其他文献
Daniel M Abrams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel M Abrams', 18)}}的其他基金
SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
- 批准号:
10231168 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
相似国自然基金
拜占庭攻击下信息物理系统基于动态通信协议的分布式滤波
- 批准号:QN25F030036
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
支持特征检索的高效可信隐私集合求交协议研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无人机物联系统关键技术标准化研究项目
- 批准号:JCZRLH202501179
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
分布式双向访问控制关键密码学方法研究
- 批准号:2025JJ50372
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向车联网的抗量子安全多方密钥协商协议设计研究
- 批准号:QN25F020070
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无人机辅助的车辆通信技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
低算力环境下基于AI深度神经网络的HTTP/2协议DDos攻击检测技术应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新一代分片区块链理论方法与关键技术
研究
- 批准号:
- 批准年份:2025
- 资助金额:100.0 万元
- 项目类别:省市级项目
面向工业装备零部件的芯片级安全认证关键技术及应用
- 批准号:2025C01063
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
异步网络模型下的安全动态可扩展拜占
庭容错协议研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Standard Grant