Targeted Modification of Membrane Lipids
膜脂质的靶向修饰
基本信息
- 批准号:10176514
- 负责人:
- 金额:$ 31.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAnimal ModelAntibiotic ResistanceBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBicyclingBindingBiologicalBiologyCationsCell membraneCellsCenters for Disease Control and Prevention (U.S.)Cessation of lifeChargeChemistryComputer ModelsCyclic PeptidesDefensinsDrug resistanceEligibility DeterminationEntropyEvolutionHost DefenseHost Defense MechanismHumanImmune systemImmunityIn VitroInfectionInvadedLibrariesLipidsLysineMammalian CellMasksMediatingMembraneMembrane LipidsMethodologyModelingModificationMusMutationNatural ImmunityNatural ProductsOrganismPeptide LibraryPeptidesPeriodicityPhosphatidylglycerolsPotassiumReportingResearchResistanceSideSite-Directed MutagenesisSocietiesStaphylococcus aureusStructureTestingWorkaqueousbactericidebasebiomaterial compatibilitycell killingdesignefficacy testingemerging antibiotic resistancefight againstgenome sequencingin vivoinnovationmouse modelneutrophilnovelnovel strategiespathogenpathogenic bacteriaresistance mechanismresistant strainscaffoldscreeningsmall moleculesuccesswhole genome
项目摘要
Targeted Modification of Membrane Lipids
Project Summary
The lipid composition of membranes has critical ramifications in biology. It has been long known that
bacterial and mammalian cells harbor a different set of lipids in their membranes. While a mammalian cell
membrane is largely composed of zwitterionic lipids, bacterial cells typically display anionic lipids in large
quantities. Taking advantage of this difference, many organisms have evolved cationic host defense peptides
(HDPs), which serve as the frontline of the innate immunity to fend off invading bacterial pathogens. For
example, human neutrophils rely on cationic defensins for bacterial cell killing and clearance. To acquire
resistance against cationic HDPs, selected bacterial species synthesize the lipid Lys-PG, which carries a net
positive charge. We hypothesize that synthetic molecules that bind Lys-PG and consequently mask its net
charge will re-sensitize the bacterial cells to killing by HDPs. To test the hypothesis, we will develop synthetic
modifiers of Lys-PG by introducing reversible covalent warheads into well-structured scaffolds. Further we will
test the efficacy of Lys-PG modification in vitro and in mouse infection models. The specific aims are: 1) we will
use a known, foldable cyclic peptide scaffold to assemble multiple side chains for Lys-PG modification.
Computational modeling will be integrated with experimental characterization to optimize for Lys-PG binding; 2)
we will develop potent and specific modifiers of Lys-PG by screening novel bicyclic peptide libraries. This part
of the proposal will be based on a powerful peptide bicyclization strategy recently developed by our group; 3)
the Lys-PG modifiers developed in 1) and 2) will be tested for their capability to potentiate the bactericidal
activity of several HDPs and neutrophils. Their efficacy to facilitate bacterial clearance will be further examined
in mouse models of infection. With success, the proposed work will yield a novel strategy to fight against the
drug-resistance strains of bacterial pathogens. Although the proposed work focuses on Lys-PG, the
methodology developed here should be extendable to other lipid modifications of biological significance.
膜脂质的靶向修饰
项目摘要
膜的脂质组成在生物学中具有重要的分支。众所周知,
细菌和哺乳动物细胞在其膜中含有不同的脂质组。而哺乳动物细胞
膜主要由两性离子脂质组成,细菌细胞通常在大的膜中显示阴离子脂质。
是介于利用这种差异,许多生物进化出阳离子宿主防御肽
(HDPs),其充当先天免疫的前线以抵御入侵的细菌病原体。为
例如,人嗜中性粒细胞依赖于阳离子防御素来杀死和清除细菌细胞。收购
为了抵抗阳离子HDPs,选择的细菌物种合成脂质Lys-PG,其携带一个网,
正电荷我们假设,结合Lys-PG并因此掩盖其网络的合成分子
电荷将使细菌细胞对HDP的杀伤重新敏感。为了验证这一假设,我们将开发合成
Lys-PG的修饰剂,通过引入可逆的共价弹头到结构良好的支架。此外,我们将
在体外和小鼠感染模型中测试Lys-PG修饰的功效。具体目标是:1)我们将
使用已知的可折叠环肽支架组装多个侧链用于Lys-PG修饰。
计算建模将与实验表征相结合,以优化Lys-PG结合; 2)
我们将通过筛选新的双环肽文库来开发Lys-PG的有效和特异性修饰剂。这部分
该提案的一部分将基于我们小组最近开发的强大的肽双环化策略; 3)
将测试在1)和2)中开发的Lys-PG改性剂增强杀菌性的能力,
几种HDPs和中性粒细胞的活性。它们促进细菌清除的功效将进一步研究
在感染的小鼠模型中。如果成功,拟议的工作将产生一个新的战略,以打击
细菌病原体的耐药性菌株。虽然拟议的工作重点是Lys-PG,
这里开发的方法应该可以扩展到其他具有生物学意义的脂质修饰。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH.
- DOI:10.1002/chem.201502077
- 发表时间:2015-10-12
- 期刊:
- 影响因子:0
- 作者:Bandyopadhyay A;Gao J
- 通讯作者:Gao J
Cation-π Lights Up "Halo".
- DOI:10.1021/acs.biochem.7b00702
- 发表时间:2017-10-10
- 期刊:
- 影响因子:2.9
- 作者:Gao J
- 通讯作者:Gao J
Fast Diazaborine Formation of Semicarbazide Enables Facile Labeling of Bacterial Pathogens.
- DOI:10.1021/jacs.6b11115
- 发表时间:2017-01-18
- 期刊:
- 影响因子:15
- 作者:Bandyopadhyay A;Cambray S;Gao J
- 通讯作者:Gao J
Metal-Assisted Folding of Prolinomycin Allows Facile Design of Functional Peptides.
- DOI:10.1002/cbic.201600667
- 发表时间:2017-03-02
- 期刊:
- 影响因子:0
- 作者:Hosseini AS;Wang W;Haeffner F;Gao J
- 通讯作者:Gao J
Targeting biomolecules with reversible covalent chemistry.
用可逆的共价化学靶向生物分子。
- DOI:10.1016/j.cbpa.2016.08.011
- 发表时间:2016-10
- 期刊:
- 影响因子:7.8
- 作者:Bandyopadhyay, Anupam;Gao, Jianmin
- 通讯作者:Gao, Jianmin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianmin Gao其他文献
Jianmin Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianmin Gao', 18)}}的其他基金
Novel Phage Display Platforms to Overcome Colistin Resistance
克服粘菌素耐药性的新型噬菌体展示平台
- 批准号:
10405089 - 财政年份:2019
- 资助金额:
$ 31.3万 - 项目类别:
Novel Phage Display Platforms to Overcome Colistin Resistance
克服粘菌素耐药性的新型噬菌体展示平台
- 批准号:
10165742 - 财政年份:2019
- 资助金额:
$ 31.3万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists