Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
基本信息
- 批准号:10178249
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-06 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActin-Binding ProteinActinsAdhesionsArchitectureBindingBinding ProteinsBioinformaticsBiological AssayBiophysicsBody partCardiomyopathiesCell physiologyCellsCellular MechanotransductionChemical StructureChemicalsCryo-electron tomographyCryoelectron MicroscopyCuesCytoskeletonDataDevelopmentDiseaseDrug DesignDrug TargetingElementsEnvironmentEventExposure toF-ActinF-actin-binding proteinsFilamentFoundationsFunctional disorderGoalsHealthImage AnalysisInterventionLengthMalignant NeoplasmsMechanicsMicrofilamentsModelingMolecularMolecular ConformationMolecular MotorsMotorMotor ActivityMutationMyosin ATPaseOutcomePathway interactionsPhysiologicalPolymersPreparationProcessProtein RegionProteinsProteomeRegulationResearch Project GrantsResolutionRoleSamplingSeriesSideSignal PathwaySignal TransductionSignaling ProteinStructureSurfaceSystemTestingTherapeuticVinculinWeight-Bearing statealpha cateninbasecalponincancer cellcell behaviorcofilincomparativecompleted suicidedeep learningdesigndetectordrug developmentdrug discoveryflexibilityfluid flowhuman diseaseimmune functionin vivoinsightknowledge basemacromolecular assemblymechanical forcemechanotransductionmutantnetwork architectureprotein structureprotein structure functionreceptorreconstitutiontherapeutic developmenttherapeutic targetthree dimensional structure
项目摘要
PROJECT SUMMARY
Cells in the body perceive cues from their local environment, which control cellular behavior through a
coordinated series of molecular events known as signaling. Signaling is critically important for telling a cell if it
should grow and divide, migrate to a different part of the body, or commit suicide if it has completed its function
or been irreparably damaged. Frequently, signaling processes are found to be working incorrectly in diseased
cells. For instance, cancer cells divide and migrate out of control and ignore cues which should keep them in
check. Signals come in multiple forms. Specific molecules bind and activate cognate receptor proteins in the cell,
known as “chemical signaling”, which is broadly well-understood. Physical forces and the rigidity of a cell’s
environment also elicit specific cell behaviors, but we have a comparatively poor understanding of how proteins
transmit these “mechanical signals”. A significant fraction of successful drugs target protein molecules which
operate in chemical signaling. The development of many such treatments was stimulated by determining the
detailed three-dimensional chemical structures of the interactions between receptor proteins and the molecules
which activate them, facilitating the design of drugs which precisely intervene in these processes. Despite its
importance, efforts to therapeutically target mechanical signaling have been limited. The long-term goal of this
research project is to visualize how forces modulate the three-dimensional structure of mechanical signaling
proteins to activate them, in order to facilitate the development of drugs that block these changes.
This proposal is specifically focused on understanding how cellular polymers (“filaments”) composed of
the protein actin coordinate mechanical signaling. The cell contains many networks composed of actin filaments,
myosin molecular motor proteins, and hundreds of other binding partners, which collectively generate and
transmit diverse forces. We hypothesize that specific types of forces cause distinct physical rearrangements in
actin filaments, which can be detected by other proteins in the cell through direct binding interactions. We will
identify proteins which bind actin in a force-sensitive manner (Aim 1), focusing specifically on delineating the
precise regions of the proteins which confer force-sensitivity. We will next visualize how side-wise bending forces
(Aim 2) and length-wise tensile and compressive forces generated by myosin motor proteins (Aim 3) impact actin
filament structure, hypothesizing these force regimes produce distinct rearrangements which can be
discriminated by binding partners. In pursuit of these Aims, we are developing sample preparation and
computational image analysis approaches to visualize the three-dimensional structure of actin polymers in the
presence of mechanical forces with cryo-electron microscopy (cryo-EM). In addition to providing basic insights
into how forces are perceived by cells through changes in protein structure, our studies will guide the
development of precise molecular interventions into mechanical signaling processes governed by actin.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY M ALUSHIN其他文献
GREGORY M ALUSHIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY M ALUSHIN', 18)}}的其他基金
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10382368 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10579395 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10584619 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
相似国自然基金
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
转录因子Pax5调控肌动蛋白结合蛋白诱导线粒体凋亡在神经管畸形发生过程中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白2降调通过Rap1信号通路参与子痫前期发病的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
SYNPO2调节神经自噬损伤在BMSCs治疗新生儿缺血缺氧性脑病中的作用及机理研究
- 批准号:82001604
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针刺抗哮喘靶标Transgelin-2跨膜结构与信号传导机制研究
- 批准号:81973951
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
基于高效模拟设计的抗哮喘靶标蛋白TG2激动剂的发现优化
- 批准号:81872797
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Cortactin在紫绀型先心病内源性肺保护中的作用及机制研究
- 批准号:81870070
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
肌动蛋白结合蛋白TAGLN2在甲状腺乳头状癌侵袭转移中的作用及机制研究
- 批准号:81672644
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Transgelin-2靶标的针刺抗哮喘效应机制及活性小分子生物学功能研究
- 批准号:81574058
- 批准年份:2015
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6338828 - 财政年份:2000
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6107703 - 财政年份:1999
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6271817 - 财政年份:1998
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6240599 - 财政年份:1997
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS & ACTIN-BINDING PROTEIN
肌动蛋白的结构/相互作用
- 批准号:
3287441 - 财政年份:1985
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS & ACTIN-BINDING PROTEIN
肌动蛋白的结构/相互作用
- 批准号:
3287442 - 财政年份:1985
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS & ACTIN-BINDING PROTEIN
肌动蛋白的结构/相互作用
- 批准号:
3287445 - 财政年份:1985
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS & ACTIN-BINDING PROTEIN
肌动蛋白的结构/相互作用
- 批准号:
3287439 - 财政年份:1985
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/INTERACTIONS OF ACTINS & ACTIN-BINDING PROTEIN
肌动蛋白的结构/相互作用
- 批准号:
3287443 - 财政年份:1985
- 资助金额:
$ 33.9万 - 项目类别: