Preferences Elicited and Respected for Seriously-Ill Veterans through Enhanced Decision-Making (PERSIVED)

通过加强决策制定,为重病退伍军人争取并尊重他们的偏好(PERSIVED)

基本信息

  • 批准号:
    10186337
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The impact goal of this Level 2 QUERI Program, entitled Preferences Elicited and Respected for Seriously Ill Veterans through Enhanced Decision-Making (PERSIVED), is to prevent unwanted, burdensome life-sustaining treatments (LST) by eliciting preferences for care from seriously ill Veterans. This goal addresses the VA’s modernization priorities of committing to zero harm and reducing unwanted variation. Aggressive interventions at the end of life are often burdensome rather than beneficial. A strong research base shows that seriously ill individuals choose less aggressive interventions when they are knowledgeable about the full range of treatment options, including comfort-focused care. These informed choices, which promote preference-sensitive care, are facilitated by robust discussions about the patient’s values and goals for care, illness trajectory, and risks and benefits of all care options. To honor patients’ treatment preferences, these choices should be documented in durable, unambiguous directives that are accessible across care settings. Conducting goals of care conversations (GoCC) and documenting treatment preferences is associated with lower treatment-related morbidity, enhanced patient quality of life, lower acute care/emergency department use, decreased healthcare costs, and better patient and family experiences of care. The COVID-19 pandemic has heightened the importance of proactively conducting GoCC and documenting preferences for life-sustaining treatments for patients with underlying serious illness. This proposal focuses on two groups of seriously ill Veterans: those enrolled in Home Based Primary Care (HBPC) programs and Veterans receiving care in community nursing homes (CNHs). We focus on these two groups because both represent large, expanding community-based GEC programs serving Veterans who are at high risk of hospitalization and death in the next 1–2 years. Despite their risk of receiving burdensome care, many HBPC and CNH programs have low rates of documentation of care preferences. The aims and evidence-based practices (EBPs) for this proposal are: Aim 1 (EBP 1): Equip clinicians with data and tools to document LST preferences for Veterans in HBPC and convert their preferences into actionable orders to promote goal-concordant care; and Aim 2 (EBP 2): Equip clinicians with data and tools to consistently document LST preferences among Veterans receiving VA-paid care in CNHs and convert their preferences into actionable orders that cross VA and non-VA settings to promote goal-concordant care. EBP 1 will involve 12 HBPC programs with low rates of LST template completion, which will be randomized to audit and feedback plus facilitation using a stepped-wedge design. EBP 2 will involve translating Veterans’ goals and preferences into a state authorized portable order (SAPO). For EBP 2, six VA CNH programs will be randomized to audit and feedback plus facilitation using a stepped-wedge design. A key goal for both EBPs will be integration into existing workflow, automation of actionable feedback that can be implemented by teams at diverse sites and coaching of local champions. We will use interrupted time series/segmented regression analysis to evaluate EBP implementation using three quality metrics: Advance Care Plan, Hospital Free days, and Goal-Concordant Care. Key quality metrics include: 1) rates of completed LST templates among HBPC Veterans and rates of SAPOs among Veterans receiving care under the VA CNH program; 2) hospital free days per patient; and 3) concordance between documented LST preferences and care received among Veterans who choose a comfort goal of care. In addition to our specific aims for the EBPs, this QUERI program’s specific programmatic aims are to: Aim 3: Maintain productive partnerships to promote rapid response to operational partner requests; and Aim 4: Prepare the next generation of VA implementation scientists through formal education and practice-based learning with PERSIVED QUERI investigators and operational partners.
这一2级QUERI计划的影响目标,标题为偏好引起和尊重, 严重生病的退伍军人通过增强决策(PERSIVED),是为了防止不必要的,负担 生命维持治疗(LST),通过引发重病退伍军人的护理偏好。这一目标 解决了VA的现代化优先事项,致力于零伤害和减少不必要的变化。 在生命的最后阶段进行积极的干预往往是负担而不是有益的。一个强大 一项研究表明,重病患者在接受治疗时选择不那么积极的干预措施。 了解全方位的治疗方案,包括以舒适为重点的护理。这些通知 选择,促进偏好敏感的护理,促进了关于病人的健康的强有力的讨论, 护理的价值观和目标、疾病轨迹以及所有护理选择的风险和益处。为了荣誉病人的 治疗偏好,这些选择应记录在持久的,明确的指令, 可在护理机构中使用。开展护理对话(GoCC)目标并记录治疗 偏好与较低的治疗相关发病率,提高患者的生活质量,降低急性 护理/急诊科的使用,降低医疗保健成本,以及改善患者和家庭的 在乎COVID-19疫情凸显了积极开展GoCC的重要性, 记录患有潜在严重疾病的患者对维持生命治疗的偏好。 该提案重点关注两组重病退伍军人:参加家庭小学的退伍军人 护理(HBPC)计划和退伍军人在社区疗养院(CNH)接受护理。我们专注于这些 两个团体,因为两者都代表了大型的,不断扩大的以社区为基础的GEC计划,为退伍军人服务, 在未来1-2年内住院和死亡的风险很高。尽管他们有可能接受繁重的 在护理方面,许多HBPC和CNH计划的护理偏好记录率较低。 该提案的目标和循证实践(EBP)是:目标1(EBP 1):装备临床医生 使用数据和工具记录HBPC中退伍军人的LST偏好,并将其偏好转换为 目标2(EBP 2):为临床医生提供数据和工具, 一致记录在CNH接受VA付费护理的退伍军人中的LST偏好,并将其 偏好转化为可操作的命令,跨VA和非VA设置,以促进目标一致的护理。EBP 1 将涉及12个LST模板完成率较低的HBPC项目,这些项目将被随机审计 反馈加促进使用阶梯楔形设计。EBP 2将涉及翻译退伍军人的目标 和偏好转换为州授权便携订单(SAPO)。对于EBP 2,将有六个VA CNH计划 随机分为审计和反馈加促进使用阶梯楔形设计。两个EBP的一个关键目标是 集成到现有的工作流程中,自动化可操作的反馈,可由团队在 不同的网站和当地冠军教练。 我们将使用中断时间序列/分段回归分析来评估EBP的实施情况 使用三个质量指标:提前护理计划、无住院天数和目标一致的护理。关键质量 指标包括:1)HBPC退伍军人中完成LST模板的比率和 根据VA CNH计划接受护理的退伍军人; 2)每位患者的免费住院天数;以及3)一致性 选择舒适护理目标的退伍军人中记录的LST偏好和接受的护理之间的关系。 除了我们对EBP的具体目标外,该QUERI计划的具体计划目标是: 目标3:保持富有成效的伙伴关系,促进对业务伙伴的要求作出迅速反应;目标4: 通过正规教育和基于实践的培训,培养下一代VA实施科学家 与PERSIVED QUERI调查人员和业务合作伙伴一起学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARY ERSEK其他文献

MARY ERSEK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARY ERSEK', 18)}}的其他基金

Implementing Goals of Care Conversations with Veterans in VA LTC Settings
在 VA LTC 环境中实现与退伍军人的护理对话目标
  • 批准号:
    9074697
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Development of a Multidimensional Pain Measure for Persons with Dementia
为痴呆症患者开发多维疼痛测量方法
  • 批准号:
    8597439
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Development of a Multidimensional Pain Measure for Persons with Dementia
为痴呆症患者开发多维疼痛测量方法
  • 批准号:
    8277166
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Nursing Home Pain Management Algorithm Clinical Trial
疗养院疼痛管理算法临床试验
  • 批准号:
    6923462
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Nursing Home Pain Management Algorithm Clinical Trial
疗养院疼痛管理算法临床试验
  • 批准号:
    7414489
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Nursing Home Pain Management Algorithm Clinical Trial
疗养院疼痛管理算法临床试验
  • 批准号:
    7082866
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Nursing Home Pain Management Algorithm Clinical Trial
疗养院疼痛管理算法临床试验
  • 批准号:
    7222670
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Nursing Home Pain Management Algorithm Clinical Trial
疗养院疼痛管理算法临床试验
  • 批准号:
    7619611
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Nursing Assistant EOL Care Computerized Education
护理助理 EOL Care 计算机化教育
  • 批准号:
    6718582
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
Nursing Assistant EOL Care Computerized Education
护理助理 EOL Care 计算机化教育
  • 批准号:
    6890903
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了