TOPIC 389 - INTELLIGENT SOFTWARE FOR RADIATION THERAPY PLANNING
主题 389 - 用于放射治疗计划的智能软件
基本信息
- 批准号:10196876
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchivesArtificial IntelligenceCancer PatientComplexComputer softwareDataData SetDevelopmentElementsGenerationsGoalsHumanIntelligenceInterventionMachine LearningMalignant neoplasm of prostateManualsMedical ImagingMethodologyModalityNormal tissue morphologyOperative Surgical ProceduresPatient CarePatientsPhaseProcessProstate Cancer therapyPythonsRadiation Dose UnitRadiation OncologyRadiation therapyRiskSupervisionSystemTechnologyTherapeuticTrainingWorkautomated algorithmautomated segmentationbasecancer therapydata reductioneffective therapyhigh riskintelligent algorithmmachine learning algorithmmeetingsoperationprediction algorithmprototyperesponsestemsuccesstreatment planningtumorweb interface
项目摘要
INTELLIGENT SOFTWARE FOR RADIATION THERAPY PLANNING
Besides surgery, radiotherapy is the most effective treatment modality for localized prostate cancer. The success of radiotherapy stems from the exploit of a therapeutic window in tumor response and normal tissue tolerance which maximizes the chance of sterilizing the tumor while sparing the surrounding normal tissue from severe damage. This requires an accurate and individualized radiation dose distribution generated from the examination of the patient’s medical images. Radiation therapy is technically complex and labor intensive. Intensive human supervision and intervention are needed throughout the path of patient care.
Artificial intelligence and machine learning technologies are adept at automating workflows and tasks—in this case the development of cancer treatment plans. We believe that this machine learning has incredible potential to address inherent problems in the existing treatment planning workflow. Our approach will mitigate the current issues with treatment planning, integrate seamlessly with day-to-day operations, and will serve as a treatment solution that benefits patients in a way that limits their risk and extends their lives.
The goal of this project is to develop a start-to-end prostate cancer treatment planning system. We will work with three expert radiation oncology teams to archive existing patient data for use in training of artificial intelligence algorithms. These algorithms will enable high quality plans to be generated with ease. At the completion of Phase I, we will have a prototype interface that will allow users to create treatment plans and segmentation using artificial intelligence algorithms. Additionally, users will be able to evaluate these plans against other expert plans and against the training data.
放射治疗计划的智能软件
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN EDELEN其他文献
JONATHAN EDELEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN EDELEN', 18)}}的其他基金
TOPIC 389 - INTELLIGENT SOFTWARE FOR RADIATION THERAPY PLANNING
主题 389 - 用于放射治疗计划的智能软件
- 批准号:
10027492 - 财政年份:2019
- 资助金额:
$ 5.5万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant