Classifying malignant pulmonary nodules using biophysics-enhanced artificial intelligence
使用生物物理学增强人工智能对恶性肺结节进行分类
基本信息
- 批准号:10195872
- 负责人:
- 金额:$ 66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgeArtificial IntelligenceBacterial InfectionsBenignBig Data MethodsBiological MarkersBiomechanicsBiomedical EngineeringBiophysicsBostonCancer EtiologyCessation of lifeChronic Obstructive Airway DiseaseClassificationClinicalComputer ModelsCouplingDataData SetDiagnosisDiagnosticEarly DiagnosisFamilyFibrosisForce of GravityGenderGoalsGrowthHealthHealthcare SystemsImageIncidenceLawsLocationLogistic RegressionsLungLung infectionsLung noduleMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMapsMechanical StressMechanical ventilationMechanicsMedicalMedical centerMethodsModelingMorphologyNetwork-basedNodulePathologicPatient CarePatientsPerformancePhysicsPhysiologicalPrediction of Response to TherapyPrognosisPublic Health PracticePublishingPulmonary EmphysemaPulmonary FibrosisRecording of previous eventsResearchRiskRisk FactorsScanningStatistical ModelsTestingTrainingUnited StatesVirus DiseasesWorkX-Ray Computed Tomographybasecancer classificationclinical decision-makingcomputational network modelingcomputed tomography screeningconvolutional neural networkcostdeep neural networkimprovedlung cancer screeningmechanical forcemortalitymortality risknetwork modelsnovelnovel diagnosticsnovel strategiespredictive modelingpredictive toolsprognosticscreeningstemtherapy outcometumortumor progression
项目摘要
SUMMARY:
Lung cancer is the most common cause of cancer death in the United States with an estimated 140,000 deaths
in 2020. While it has been demonstrated that lung screening reduces the mortality by 20%, accurate classification
of malignant tumors remains an unmet need due to high rate of false positive cases. Current classification
approaches by means of computed tomography (CT) screenings are based on statistical predictive models, and
more recently artificial intelligence. Improving the classification accuracy of malignant tumors will reduce costs
and the risk of mortality and guide clinical decision making. Here, we propose a novel framework to further
improve the predictive power of current models by enriching the input information with biophysics-based
computational models. The proposed computational model generates orthogonal information, which is based on
laws of physics, and hence intrinsically unlearnable by artificial intelligence. We propose augmenting biophysical
information since numerous studies have demonstrated that the tumor progression is strongly affected by the
physical microenvironment in which they grow.
Our overall objective here is to propose the physiological mechanical forces in lung as an informative and
orthogonal biomarker to the existing input variables in state-of-the-art approaches to improve the prediction of
malignancy risk in pulmonary nodules. Our central hypothesis is that coupling a biophysics-based computational
model with the existing statistical models and artificial intelligence approaches will improve their prediction power
in classifying malignant pulmonary nodules. Our hypothesis is based on published works and our preliminary
data that the mechanical stresses in the lung are strongly correlated with both tumor incidence and growth. By
coupling biophysics-based computational model, we plan to evaluate the improved classification performance in
logistic regression model (Aim 1), as a highly interpretable model, and deep convolutional neural network (Aim
2), as a highly predictive model. Coupling biophysics-based computational model to artificial intelligence
predictive tools will improve the prediction of power at no added financial and health burden to the patient. This
novel approach, proposed here on lung cancer classification, has potential diagnostic and prognostic benefits in
other pathological lung conditions such as chronic obstructive pulmonary disease (COPD), fibrosis, mechanical
ventilation, and bacterial and viral infection of the lung.
总结:
肺癌是美国癌症死亡的最常见原因,估计有14万人死亡
2020年虽然已经证明肺部筛查可将死亡率降低20%,但准确的分类
由于高假阳性率,恶性肿瘤的诊断仍然是未满足的需求。当前分类
借助于计算机断层摄影(CT)筛查的方法基于统计预测模型,并且
最近的人工智能。提高恶性肿瘤的分类准确率将降低成本
和死亡风险,并指导临床决策。在这里,我们提出了一个新的框架,
通过使用基于生物药理学的信息丰富输入信息,提高当前模型的预测能力
计算模型所提出的计算模型生成正交信息,其基于
物理定律,因此人工智能本质上无法学习。我们建议加强生物物理
因为许多研究已经证明,肿瘤进展受到肿瘤生长因子的强烈影响,
它们生长的物理微环境。
我们的总体目标是提出肺中的生理机械力,
正交生物标志物的现有输入变量的最先进的方法,以改善预测
肺结节的恶性风险。我们的中心假设是,将基于生物药理学的计算
模型与现有的统计模型和人工智能方法将提高其预测能力
恶性肺结节的分类。我们的假设是基于已发表的作品和我们的初步研究。
数据表明,肺中的机械应力与肿瘤发生率和生长密切相关。通过
耦合基于生物药理学的计算模型,我们计划评估改进的分类性能,
逻辑回归模型(Aim 1),作为一种高度可解释的模型,以及深度卷积神经网络(Aim
2)作为一个高度预测的模型。基于生物药理学的计算模型与人工智能的耦合
预测工具将在不给患者增加经济和健康负担的情况下改善对功率的预测。这
本文提出的肺癌分类的新方法在诊断和预后方面具有潜在的益处,
其他病理性肺病,如慢性阻塞性肺病(COPD)、纤维化、机械性肺病、
通气以及肺部的细菌和病毒感染。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission.
肿瘤中固体应力的活体测量揭示了长度尺度和微环境依赖性的力传递。
- DOI:10.1038/s41551-023-01080-8
- 发表时间:2023
- 期刊:
- 影响因子:28.1
- 作者:Zhang,Sue;Grifno,Gabrielle;Passaro,Rachel;Regan,Kathryn;Zheng,Siyi;Hadzipasic,Muhamed;Banerji,Rohin;O'Connor,Logan;Chu,Vinson;Kim,SungYeon;Yang,Jiarui;Shi,Linzheng;Karrobi,Kavon;Roblyer,Darren;Grinstaff,MarkW;Nia,HadiT
- 通讯作者:Nia,HadiT
Emergence of nanoscale viscoelasticity from single cancer cells to established tumors.
- DOI:10.1016/j.biomaterials.2023.122431
- 发表时间:2023-12
- 期刊:
- 影响因子:14
- 作者:Muhamed Hadzipasic;Sue Zhang;Zhuoying Huang;Rachel Passaro;Margaret S. Sten;Ganesh M Shankar;Hadi T. Nia
- 通讯作者:Muhamed Hadzipasic;Sue Zhang;Zhuoying Huang;Rachel Passaro;Margaret S. Sten;Ganesh M Shankar;Hadi T. Nia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Tavakoli Nia其他文献
Hadi Tavakoli Nia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Tavakoli Nia', 18)}}的其他基金
CAREER: LungEx for Probing Multiscale Mechanobiology of Pulmonary Respiration-Circulation Coupling in Real-Time
职业:LungEx 用于实时探索肺呼吸-循环耦合的多尺度力学生物学
- 批准号:
2239162 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Probing functioning lung at the cellular resolution in health and disease
以细胞分辨率探测健康和疾病中的肺功能
- 批准号:
10473112 - 财政年份:2022
- 资助金额:
$ 66万 - 项目类别:
Alleviating solid stress to overcome immunotherapy resistance in metastatic breast cancer
减轻实体应激以克服转移性乳腺癌的免疫治疗耐药性
- 批准号:
9328252 - 财政年份:2017
- 资助金额:
$ 66万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 66万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 66万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 66万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 66万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 66万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 66万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




