Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
基本信息
- 批准号:10195790
- 负责人:
- 金额:$ 17.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffinityAlzheimer&aposs DiseaseBenchmarkingBindingBinding SitesBrainBrain DiseasesCatecholaminesChemicalsCommunicationComplementDataDetectionDevelopmentDiffusionDopamineEnsureEnvironmentEnzymesExtracellular SpaceFoundationsFrequenciesFutureGlutamate ReceptorGlutamatesGoalsHippocampus (Brain)In VitroLabelLengthLongevityMeasurementMeasuresMental disordersMethodsMicrodialysisMicroelectrodesModelingMolecularMolecular ConformationMonitorMorphologyNeurofibrillary TanglesNeuronsNeurotransmittersOutcomeOxidation-ReductionParkinson DiseasePathway interactionsPerformancePeriodicityPhysiologic pulsePhysiologicalPolymersProcessPublic HealthReaction TimeReporterResearchResolutionSamplingScanningSerotoninShapesSignal TransductionSliceSpecificitySpectrum AnalysisStimulusSynapsesSynaptic CleftSystemTechniquesTechnologyTimeTransducersValidationWorkaptamerautism spectrum disorderbasebrain tissueclinical applicationcopolymerdesigndetection limitelectric impedanceextracellularferroceneimprovedin vivoin vivo monitoringliquid chromatography mass spectrometrymillisecondmonomermouse modelnervous system disorderneurochemistrynovelnovel strategiespatch clamppolymerizationreal time monitoringreceptorreceptor bindingsensorsensor technologysuccesstemporal measurementuptake
项目摘要
PROJECT SUMMARY / ABSTRACT
There is a great demand for a new sensing technology that can monitor neurochemicals in brain continuously in
real-time with high temporal resolution. While electrochemical detection of electroactive neurotransmitters (such
as dopamine and serotonin) have been successful using high frequency voltammetric methods (such as fast-
scan cyclic voltammetry), measurement of non-electroactive species (such as glutamate) still remain a great
challenge for achieving real-time monitoring with high time resolution. The goal of this project is to implement a
new electrochemical sensing platform that can monitor glutamate, a well-known non-electroactive
neurotransmitter, with physiologically relevant detection range and high temporal resolution. The proposed
sensing approach can serve as an alternative to enzymatic sensing or microdialysis which have some limitations
with respect to time resolution and stability. Motivated in part by the aptamer-based electrochemical sensors,
the proposed sensing mechanism utilizes a novel synthetic target receptor as both a target recognition unit and
a signal transducer. The glutamate receptor is formed by a single-chain stimuli-responsive templated polymer
that binds specifically to its template molecule, namely, glutamate. Furthermore, upon selective target
recognition, the polymer undergoes conformation change (from linear to folded shape). This change in polymer
morphology can be electrochemically detected through the use of a redox reporter (such as ferrocene) attached
to the polymer. For validation of the proposed sensing approach, the developed sensor will be compared against
two well-established methods, a patch clamp and a microdialysis technique. A patch clamp system is ideal for
measuring fast dynamics (milliseconds) of chemical exchange at the synaptic cleft of the neurons, however,
lacks chemical specificity. A microdialysis in conjunction with liquid chromatography and mass spectrometry
provides exceptional chemical specificity, however, the temporal resolution is poor (on the order of minutes). It
is expected that the developed sensor platform will be able to bridge the gap between these two existing methods
and to provide versatility in sensing performances. The goals of this project will be achieved by pursuing the
following specific aims: (1) optimization of the templated polymer-based glutamate receptor to meet the desired
performance metrics; and (2) validation of the developed glutamate sensor in a physiological environment. The
successful outcome of this project will be the development of a new general platform technology for detection of
neurochemicals in real-time with a time resolution that is sufficient for studying synaptic communications as well
as for monitoring chemicals in the extracellular regions in the brain tissue.
项目总结/摘要
因此,人们迫切需要一种新的传感技术,能够连续监测大脑中的神经化学物质,
具有高时间分辨率的实时。虽然电活性神经递质(如
如多巴胺和5-羟色胺)已经成功地使用高频伏安法(如快速-
扫描循环伏安法),非电活性物质(如谷氨酸盐)的测量仍然存在很大的困难。
实现具有高时间分辨率的实时监测的挑战。该项目的目标是实现一个
一种新的电化学传感平台,可以监测谷氨酸,一种众所周知的非电活性
神经递质,具有生理相关的检测范围和高时间分辨率。拟议
传感方法可以作为具有某些限制的酶传感或微透析的替代方案
在时间分辨率和稳定性方面。部分受基于适体的电化学传感器的启发,
所提出的传感机制利用新型合成目标受体作为目标识别单元
信号转换器。谷氨酸受体由单链刺激响应模板聚合物形成
与其模板分子谷氨酸特异性结合。此外,在选择性目标
当聚合物被识别时,聚合物经历构象变化(从线性到折叠形状)。这种聚合物的变化
形态可以通过使用附着在其上的氧化还原报告物(例如二茂铁)电化学检测
聚合物。为了验证所提出的传感方法,将开发的传感器与
两种成熟的方法,膜片钳和微透析技术。膜片钳系统是理想的
然而,测量神经元突触间隙处化学交换的快速动力学(毫秒),
缺乏化学特性。液相色谱-质谱联用微透析技术
提供了特殊的化学特异性,然而,时间分辨率很差(分钟量级)。它
预计开发的传感器平台将能够弥合这两种现有方法之间的差距
并提供传感性能的多功能性。该项目的目标将通过以下方式实现:
以下具体目的:(1)优化基于模板化聚合物的谷氨酸受体,以满足期望的
性能指标;和(2)在生理环境中验证所开发的谷氨酸传感器。的
该项目的成功成果将是开发一种新的通用平台技术,用于检测
神经化学物质的实时时间分辨率足以研究突触通信以及
用于监测脑组织细胞外区域的化学物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Song其他文献
Edward Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Song', 18)}}的其他基金
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10532757 - 财政年份:2021
- 资助金额:
$ 17.96万 - 项目类别:
Real-Time Detection of Glutamate using Templated Polymers as Shape-Changing Target Receptors
使用模板聚合物作为变形目标受体实时检测谷氨酸
- 批准号:
10374895 - 财政年份:2021
- 资助金额:
$ 17.96万 - 项目类别:
Implantable sensor array for in vivo, real-time monitoring of multiple neurotransmitters
用于体内多种神经递质实时监测的植入式传感器阵列
- 批准号:
9211725 - 财政年份:2017
- 资助金额:
$ 17.96万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 17.96万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 17.96万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




