Inhibition of the Bacterial LexA Repressor-Protease to Halt SOS Response-Mediated Resistance and Biofilm Formation
抑制细菌 LexA 阻遏蛋白蛋白酶以阻止 SOS 反应介导的耐药性和生物膜形成
基本信息
- 批准号:10194343
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAgricultureAmericanAntibiotic ResistanceAntibioticsAreaBacteriaBacterial InfectionsBindingBinding SitesBiologicalBiological TestingBypassCell divisionCellsCessation of lifeCleaved cellCommunitiesContractsDNADNA DamageDeveloped CountriesDigestionDimethyl SulfoxideDrug TargetingElectronsElementsEscherichia coliEvaluationExposure toGenesGenetic TranscriptionGenotoxic StressGentian VioletHealthHealth Care CostsHorizontal Gene TransferHospitalsInfectionInterdisciplinary StudyInvestigationKnowledgeLeadLibrariesMeasuresMediatingMedicalMedical DeviceMedicineMetabolismMicrobeMicrobial BiofilmsModificationMonitorMutagenesisNosocomial InfectionsOperative Surgical ProceduresOrganPatientsPeptide FragmentsPeptide HydrolasesPesticidesPharmacologic SubstanceProcessPromoter RegionsProteinsPseudomonas aeruginosaRec A RecombinasesResearchResistanceResistance developmentSOS ResponseSerial PassageShelter facilitySon of Sevenless ProteinsStainsStaphylococcus aureusStructureStructure-Activity RelationshipSurfaceTranscriptional RegulationWorkanalogbacterial resistancechronic infectionclinically relevantconfocal imagingdesignfunctional grouphigh throughput screeningimprovedin vitro testinginfectious disease treatmentinhibitor/antagonistinterdisciplinary approachmanmultidrug tolerancenovelnovel strategiespathogenpressurepreventresponsesensorsmall moleculesmall molecule inhibitortargeted treatmentweapons
项目摘要
Project Summary/Abstract
The overuse and misuse of antibiotics has put evolutionary pressure on bacteria to alter
or bypass the targets of drugs or otherwise develop resistance, rendering a large percentage of
our available medicines and pesticides ineffective. Novel antibiotics have afforded temporary
relief due to quick development of resistance, although several pharmaceutical companies have
withdrawn from this area of research. Bacterial biofilms further complicate treatment of many
bacterial infections. These cell conglomerates contribute to a variety of health conditions and are
known to colonize the surfaces of most medical devices. Moreover, they shelter high numbers of
persister cells— “dormant” cells which are non-growing and tolerant of most antibiotics.
Unfortunately, most existing therapies target metabolic processes which are suspended in these
transient subpopulations of bacteria. Altogether we are facing a perfect storm of resistance and
tolerance which threatens to kill millions and unravel our current approach to medicine in the
process, unless we find a radical solution.
To this end, we have identified a potential antibiotic target—the bacterial SOS response.
This response to genotoxic stress is conserved across bacteria and has been connected to
resistance and tolerance mechanisms, including horizontal gene transfer, mutagenesis, and cell
division arrest. Transcription of SOS genes is suppressed by the repressor-protease LexA, which
cleaves upon interaction with filamentous protein RecA* to expose the SOS promoter region. A
previous high throughput screen identified a potent inhibitor of LexA cleavage. We propose a
study to improve this inhibitor and better understand its action and effects. Using a preliminary
structure-activity relationship (SAR) study as a guide, we have designed a library of 22-25 analogs
for a more in-depth SAR campaign, including analogs specifically designed to overcome potential
efflux challenges. Additionally, we have proposed peptide fragments with covalent traps to mimic
the native substrate of the LexA protease and irreversibly inhibit its function. Using our most potent
inhibitors, we will investigate the downstream biological effects of LexA inhibition, including
acquired antibiotic resistance and biofilm formation. We also plan to use photoaffinity probes to
identify the inhibitor binding site and orientation within the protein. The uniquely interdisciplinary
approach of this proposal will elucidate the mechanism of these inhibitors and will lay the
groundwork for a novel strategy to address the resistance and tolerance crisis.
项目摘要/摘要
过度使用和滥用抗生素给细菌带来了进化压力,以改变
或绕过药物的靶标或以其他方式产生抗药性,使很大一部分
我们可用的药物和农药无效。新颖的抗生素暂时提供了
由于阻力的快速发展,尽管几家制药公司已经
撤回了这一研究领域。细菌生物膜进一步复杂化了许多
细菌感染。这些细胞集团有助于各种健康状况,并且是
已知可以定居大多数医疗设备的表面。此外,它们占据了大量的
迫害细胞 - “休眠”细胞,这些细胞是非生长且耐受性大多数抗生素的细胞。
不幸的是,大多数现有疗法针对这些暂停的代谢过程
细菌的瞬态亚群。我们总共面临着一个完美的抵抗风暴,
宽容威胁要杀死数百万的宽容,并在我们目前的医学方法
过程,除非我们找到一种自由基解决方案。
为此,我们已经确定了潜在的抗生素靶标 - 细菌SOS反应。
这种对遗传毒性应激的反应在细菌之间保存下来,并已连接到
耐药性和耐受性机制,包括水平基因转移,诱变和细胞
师逮捕。 SOS基因的转录被复制蛋白蛋白酶lexa抑制
与丝状蛋白质相互作用时裂解以暴露SOS启动子区域。一个
先前的高吞吐量屏幕确定了Lexa裂解的潜在抑制剂。我们提出了一个
研究以改善这种抑制剂并更好地了解其作用和效果。使用初步
结构活性关系(SAR)研究作为指导,我们设计了一个22-25个类似物的库
要进行更深入的SAR运动,包括专门设计的类似物
排出挑战。此外,我们提出了具有共价陷阱的肽片段
Lexa蛋白酶的天然底物和不可逆地抑制其功能。使用我们最有力的
抑制剂,我们将研究Lexa抑制的下游生物学作用,包括
获得的抗生素耐药性和生物膜形成。我们还计划使用光性问题
识别抑制剂结合位点和蛋白质内的取向。独特的跨学科
该提案的方法将阐明这些抑制剂的机制,并将建立
解决抵制和宽容危机的新策略的基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploration of inhibitors of the bacterial LexA repressor-protease.
- DOI:10.1016/j.bmcl.2022.128702
- 发表时间:2022-06-01
- 期刊:
- 影响因子:2.7
- 作者:Jaramillo, Ana Victoria Cheng;Cory, Michael B.;Li, Allen;Kohli, Rahul M.;Wuest, William M.
- 通讯作者:Wuest, William M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana V Cheng其他文献
Ana V Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
- 批准号:
10545266 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Sulfotyrosine, an essential determinant for diverse protein-protein interactions
磺基酪氨酸,多种蛋白质-蛋白质相互作用的重要决定因素
- 批准号:
10545692 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
University of Wisconsin-Madison Postbaccalaureate Research Education Program (PREP) for increasing diversity in STEM
威斯康星大学麦迪逊分校学士后研究教育计划 (PREP),旨在增加 STEM 的多样性
- 批准号:
10706455 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
2022 Marine Natural Products Gordon Research Conference and Seminar
2022年海洋天然产物戈登研究会议暨研讨会
- 批准号:
10391748 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别: