Deep sequencing of pathogens to precisely define transmission networks using rare variants
对病原体进行深度测序,以使用罕见变异精确定义传播网络
基本信息
- 批准号:10196948
- 负责人:
- 金额:$ 55.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-26 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAwardBacteriaBiological AssayCharacteristicsCitrobacter rodentiumCommunicable DiseasesConsensusConsensus SequenceContact TracingDataData SetDiseaseDisease OutbreaksDisease modelDrug resistanceEnrollmentEpidemiologyEventEvolutionGeneticGenetic PolymorphismGenomeGenomicsGenotypeGoalsHIVIndividualInfectionInfection ControlInfectious AgentInfluenzaInheritedInterventionInvestigationLaboratoriesLinkLongitudinal cohort studyMethodsMissionMusMutationMycobacterium tuberculosisNucleotidesOrganismOutcomeOutputPathway interactionsPhylogenetic AnalysisPolicy MakerPopulationPositioning AttributeProcessPublic HealthResearchResolutionRisk FactorsSamplingScientistSignal TransductionSiteSkin TissueSoft Tissue InfectionsSourceSwabTechnologyTestingTrainingTreesTuberculosisUnited States National Institutes of HealthVariantVisitWorkbasecarbapenem-resistant Enterobacteriaceaecomparativedata exchangedeep sequencingdisorder preventionexperimental studyflu transmissiongenomic datagenomic platformimprovedinsightinterestmethicillin resistant Staphylococcus aureusmodels and simulationnovelnovel strategiespathogenpathogen genomepathogenic bacteriapathogenic virusprogramsprospectiverare variantrecruitsimulationsingle moleculetransmission process
项目摘要
Project Summary
Transmission trees that define how pathogens have spread through a host network are immensely valuable to
epidemiology, yet using existing methods comparing pathogen genomes such trees are difficult or impossible
to obtain for many diseases. This is because the phylogenetic tree of the infectious agents is not necessarily
equivalent to the transmission tree. For many pathogens the infecting population can harbor substantial
nucleotide diversity, that is not adequately characterized by the genomes of one or a few isolates, and which is
predicted to mislead attempts to reconstruct transmission chains. An alternative source of data to infer
transmission is `shared rare variants': polymorphic sites at which more than one nucleotide is present within
the infection, and which are shared among a small number of cases. The reasoning is that these reflect a
transmission bottleneck that allows through more than one genotype, and so the same variant site is
vanishingly unlikely to be found by chance in unrelated cases. Preliminary simulations modeling evolution of
pathogens on a transmission network indicate that this approach is greatly superior to existing methods. This is
further supported by recent work on viral pathogens including Influenza and HIV that correlates shared rare
variants with host networks, but these methods have not been tested by experiment, or applied to bacteria.
The proposed research uses deep sequencing to assay shared rare variants in populations of three bacterial
pathogens: experimental transmission of Citrobacter rodentium in mice, a longitudinal cohort study of MRSA
transmission in a high burden setting, and tuberculosis outbreaks. Preliminary data from the transmission
experiments indicate multiple polymorphisms have arisen over the relatively short transmission chains (20
animals). The MRSA study will use samples from 4 body sites collected from ~600 recruits to the US Army
undergoing basic training, and will test whether shared rare variants will be more likely to be found among
close contacts reflecting the host network. This can be used to determine whether some body sites are more
likely to transmit, and variants found in carriage samples can be compared with those from cases of skin and
soft tissue infection to determine which body site is the likely source. The new 10X Genomics platform, which
by tagging single molecules can increase resolution beyond the basic strategy, will be trialed to test whether it
further discriminates between potential sources. Finally, deep sequence data from two retrospectively analyzed
and identified outbreaks of TB will be assayed to develop means to infer the presence of unsampled links,
which can then be applied to samples prospectively collected and sequenced by collaborators. Taken together
this program of research will provide an unparalleled insight into the processes of infection within the host,
which will inform contact tracing and help identify missed links in the transmission chain, allow new approaches
to the study of risk factors, and allow better estimates of parameters for disease modeling.
项目摘要
定义病原体如何通过主机网络传播的传播树对于
流行病学,但使用现有的方法比较病原体基因组,这样的树是困难的或不可能的
来治疗许多疾病。这是因为传染源的系统发育树不一定
相当于传输树。对于许多病原体,感染人群可以携带大量的
核苷酸多样性,一个或几个分离株的基因组不能充分表征,
预计会误导重建传播链的尝试。另一个数据来源来推断
传播是“共享的罕见变异”:多态性位点,其中一个以上的核苷酸存在于
感染,并在少数病例中共享。理由是,这些反映了一个
这是一个传输瓶颈,允许通过一个以上的基因型,所以同一个变异位点是
在不相关的案件中不太可能偶然发现。初步模拟模拟
传播网络上的病原体表明该方法大大优于现有方法上级。这是
最近关于病毒病原体(包括流感和艾滋病毒)的研究进一步支持了这一观点,
变种与宿主网络,但这些方法还没有通过实验测试,或应用于细菌。
这项拟议的研究使用深度测序来分析三种细菌种群中共有的罕见变异。
病原体:鼠中柠檬酸杆菌的实验传播,MRSA的纵向队列研究
高负担环境下的传播和结核病暴发。传输的初步数据
实验表明,在相对较短的传播链上出现了多种多态性(20
动物)。MRSA研究将使用从美国陆军约600名新兵中收集的4个身体部位的样本
接受基本训练,并将测试是否共享的罕见变异将更有可能被发现,
密切接触者反映了东道国网络。这可以用来确定一些身体部位是否更
可能传播,在运输样本中发现的变异可以与皮肤和
软组织感染,以确定哪个身体部位是可能的来源。新的10X Genomics平台,
通过标记单分子可以提高分辨率超出基本策略,将进行试验,以测试它是否
进一步区分潜在的来源。最后,对两个深部层序资料进行了回顾性分析,
并对已确定的结核病爆发进行分析,以开发推断未抽样联系存在的方法,
然后可以将其应用于合作者预期收集和测序的样品。两者合计
这项研究计划将为宿主体内的感染过程提供无与伦比的洞察力,
这将为接触者追踪提供信息,并帮助识别传播链中遗漏的环节,
风险因素的研究,并允许更好地估计疾病建模的参数。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using viral load and epidemic dynamics to optimize pooled testing in resource-constrained settings.
- DOI:10.1126/scitranslmed.abf1568
- 发表时间:2021-04-14
- 期刊:
- 影响因子:17.1
- 作者:Cleary B;Hay JA;Blumenstiel B;Harden M;Cipicchio M;Bezney J;Simonton B;Hong D;Senghore M;Sesay AK;Gabriel S;Regev A;Mina MJ
- 通讯作者:Mina MJ
Inferring bacterial transmission dynamics using deep sequencing genomic surveillance data.
- DOI:10.1038/s41467-023-42211-8
- 发表时间:2023-10-31
- 期刊:
- 影响因子:16.6
- 作者:Senghore M;Read H;Oza P;Johnson S;Passarelli-Araujo H;Taylor BP;Ashley S;Grey A;Callendrello A;Lee R;Goddard MR;Lumley T;Hanage WP;Wiles S
- 通讯作者:Wiles S
Perfect as the enemy of good: tracing transmissions with low-sensitivity tests to mitigate SARS-CoV-2 outbreaks.
- DOI:10.1016/s2666-5247(21)00004-5
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Kennedy-Shaffer L;Baym M;Hanage WP
- 通讯作者:Hanage WP
Transmission of SARS-CoV-2 before and after symptom onset: impact of nonpharmaceutical interventions in China.
SARS-COV-2在症状发作前后的传播:中国非药物干预的影响。
- DOI:10.1007/s10654-021-00746-4
- 发表时间:2021-04
- 期刊:
- 影响因子:13.6
- 作者:Bushman M;Worby C;Chang HH;Kraemer MUG;Hanage WP
- 通讯作者:Hanage WP
Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission.
- DOI:10.1099/mgen.0.000217
- 发表时间:2018-10
- 期刊:
- 影响因子:3.9
- 作者:Martin MA;Lee RS;Cowley LA;Gardy JL;Hanage WP
- 通讯作者:Hanage WP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Hanage其他文献
William Hanage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Hanage', 18)}}的其他基金
Casual, Statistical and Mathematical Modeling with Serologic Data
使用血清学数据进行休闲、统计和数学建模
- 批准号:
10852367 - 财政年份:2020
- 资助金额:
$ 55.45万 - 项目类别:
Casual, Statistical and Mathematical Modeling with Serologic Data
使用血清学数据进行休闲、统计和数学建模
- 批准号:
10264480 - 财政年份:2020
- 资助金额:
$ 55.45万 - 项目类别:
Deep sequencing of pathogens to precisely define transmission networks using rare variants
对病原体进行深度测序,以使用罕见变异精确定义传播网络
- 批准号:
9382280 - 财政年份:2017
- 资助金额:
$ 55.45万 - 项目类别:
Ecological and genetic contributions to the spread of resistance in pneumococcus
生态和遗传对肺炎球菌耐药性传播的贡献
- 批准号:
8667991 - 财政年份:2013
- 资助金额:
$ 55.45万 - 项目类别:
Ecological and genetic contributions to the spread of resistance in pneumococcus
生态和遗传对肺炎球菌耐药性传播的贡献
- 批准号:
9275347 - 财政年份:2013
- 资助金额:
$ 55.45万 - 项目类别:
Ecological and genetic contributions to the spread of resistance in pneumococcus
生态和遗传对肺炎球菌耐药性传播的贡献
- 批准号:
8558619 - 财政年份:2013
- 资助金额:
$ 55.45万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
- 批准号:
EP/Z531856/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
- 批准号:
EP/Z531935/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
- 批准号:
EP/Z531947/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
- 批准号:
EP/Z531923/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant