A personalized preventive care recommendation system by integrating guidelines with the EHR data
将指南与 EHR 数据相结合的个性化预防保健推荐系统
基本信息
- 批准号:10202935
- 负责人:
- 金额:$ 15.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2023-08-09
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsArtificial IntelligenceBehavioralCenters for Disease Control and Prevention (U.S.)ChronicChronic DiseaseClinicalClinical DataDataData AnalysesData ElementDiabetes MellitusDiagnosisDiseaseDisease ManagementDrug usageElectronic Health RecordEthnic OriginFamilyFamily history ofFutureGenderGoalsGuidelinesHealthHealth Care CostsHealth ExpendituresHealth PersonnelHealth systemHealthcareIndianaInformation RetrievalInterventionKnowledgeLinkMapsMedicalMental HealthMethodsNatural Language ProcessingOntologyOutcomePatient CarePatientsPhysical ExercisePreventionPreventivePreventive careProcessPublishingRecommendationRecording of previous eventsRecordsReportingResearchResearch ProposalsRisk FactorsSocial BehaviorStructureSuggestionSymptomsSystemTechniquesTextTobacco useUnited Statesbasecare systemsclinical data warehouseclinical decision supportdeep learningdesigndisabilitydisorder preventionelectronic datahealth dataimprovedinnovationlearning strategymortalitypatient engagementpatient portalpatient-clinician communicationpersonalized carepersonalized health carepopulation healthpreventproblem drinkerscreeningsocialsocial determinantsstructured dataunstructured datausability
项目摘要
PROJECT SUMMARY
Most health systems globally were designed to be reactive. The Centers for Disease Control and Prevention
(CDC) of the United States reported that 90% of the nation's $3.3 trillion annual healthcare expenditures are for
people with chronic and mental health conditions. Therefore, preventing diseases is key to improving people's
health and keeping rising health costs under control. The criteria in the preventive care clinical decision support
(CDS) modules in most of the EHR systems are limited to age, gender, and screening intervals. This "one size
fits all" preventive care CDS does not provide any personalized recommendations by considering the risk factors
that relate to a patient's family history, social behavior history, ethnicity, and various chronic disease history.
Social history, including behavioral and environmental determinants, are increasingly recognized as critical risk
factors for many causes of disease, disability, and mortality in the United States. Very little research has been
conducted on applying Natural Language Processing (NLP) techniques and artificial intelligence techniques to
extract information from the preventive care guidelines and EHR data to generate personalized preventive care
recommendations by considering the risk factors. Since most of the risk factors, such as social behaviors are
rarely systematically extracted from the clinical notes, linking this information to preventive care is still very
uncommon. The main objective of this research proposal is to develop a system to generate personalized
preventive recommendations by using information extracted from the preventive care guidelines and the
information, including risk factors extracted from the EHR data. The personalized preventive recommendations
will provide the recommendations as well as rationales based on the EHR data and preventive care guidelines.
Our long-term goal is to automate the integration of various preventive care guidelines with the EHR data to
generate personalized preventive care recommendations, to engage more patients in preventive care, and to
reduce the healthcare cost and improve population health. The innovative NLP methods and deep learning-
based algorithms can be used to extract information from other narrative guidelines so that they to be analyzed
with the EHR data. We will (1) use a proposed EHR component-based data interchange structure to analyze the
extracted information consistently; (2) extract information from the clinical guidelines automatically; (3) extract
the risk factors, such as social behaviors, symptoms and other risk factors from the structured and unstructured
EHR data using innovative NLP processing; (4) evaluate the efficiency, accuracy and usability of the
personalized preventive care system through involving both healthcare providers and patients. We will utilize the
Indiana Network for Patient Care (INPC) - a statewide clinical data warehouse. Our rigorous methods and the
availability of the EHR data make it possible in the future to explore (1) personalized healthcare by considering
risk factors extracted from the EHR, and (2) improved patient engagement in disease prevention and
management by utilizing EHR data.
项目总结
全球大多数卫生系统的设计都是反应性的。疾病控制和预防中心
美国疾病控制与预防中心(CDC)报告称,全国3.3万亿美元的年度医疗支出中有90%用于
患有慢性病和精神疾病的人。因此,预防疾病是提高人们健康水平的关键
健康和控制不断上升的医疗费用。预防保健临床决策支持中的标准
大多数电子病历系统中的(CDS)模块仅限于年龄、性别和筛查间隔。这个“一码”
预防保健CDS没有通过考虑风险因素来提供任何个性化的建议
这与患者的家族史、社会行为史、种族和各种慢性病史有关。
社会历史,包括行为和环境决定因素,越来越被认为是关键风险
在美国,导致疾病、残疾和死亡的因素很多。几乎没有什么研究是
将自然语言处理(NLP)技术和人工智能技术应用于
从预防护理指南和EHR数据中提取信息以生成个性化的预防护理
通过考虑风险因素提出建议。因为大多数风险因素,如社会行为,都是
很少系统地从临床记录中摘录,将这些信息与预防护理联系起来仍然是非常困难的
不同寻常。本研究方案的主要目标是开发一个系统,以生成个性化的
通过使用从预防护理指南和
信息,包括从电子健康记录数据中提取的风险因素。个性化的预防建议
将根据EHR数据和预防护理指南提供建议和理由。
我们的长期目标是自动将各种预防护理指南与EHR数据相结合,以
生成个性化的预防护理建议,让更多的患者参与预防护理,并
降低医疗成本,改善人口健康。创新的NLP方法和深度学习-
基于算法可以用来从其他叙事指南中提取信息,以便对它们进行分析
使用电子病历数据。我们将(1)使用建议的基于EHR组件的数据交换结构来分析
信息提取的一致性;(2)从临床指南中自动提取信息;(3)提取
风险因素,如社会行为、症状等风险因素来自结构化和非结构化
使用创新的NLP处理方法处理电子病历数据;(4)评估
通过让医疗服务提供者和患者共同参与的个性化预防护理体系。我们将利用
印第安纳州患者护理网络(INPC)-全州范围的临床数据仓库。我们严谨的方法和
EHR数据的可用性使未来有可能通过考虑以下因素来探索(1)个性化医疗保健
从电子病历中提取的风险因素,以及(2)改善患者对疾病预防和
利用电子病历数据进行管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Luo其他文献
Xiao Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别: