Development of the next-generation GPU-based Monte Carlo simulation platform for radiation-induced DNA damage calculations
开发下一代基于 GPU 的蒙特卡罗模拟平台,用于辐射引起的 DNA 损伤计算
基本信息
- 批准号:10203527
- 负责人:
- 金额:$ 44.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAffectBiologicalBiological ProcessBiomedical ResearchCell CycleChemicalsClinicalCommunitiesConsumptionDNADataDevelopmentDiagnostic ImagingDoseEducationEducational process of instructingElectronsEnsureExhibitsExposure toG1 PhaseGeometryGoalsHispanic-serving InstitutionHumanIndustryIonizing radiationKnowledgeLearningMalignant NeoplasmsMammographyMedical ImagingMedicineMetaphaseMethodsMicroscopicMilitary PersonnelMissionModalityModelingModern MedicineMonte Carlo MethodOrganismOutcomeOxygenPhasePhysicsPlayPolymersPositron-Emission TomographyProbabilityProblem SolvingProcessRadiationRadiation exposureRadiation therapyRadiosurgeryResearchRoleShapesStructureStudentsSystemTechnologyTestingTherapeuticThoracic RadiographyTimeUncertaintyWaterbasecarcinogenicitycost effectivedesignexperiencegenotoxicityimaging modalityimprovedindexingionizationmodel developmentmolecular dynamicsmulti-scale modelingnext generationnovelopen sourceparallel computerparticlerepairedsimulationspatiotemporalsuccesstomographytoolundergraduate studentuser-friendlyweb interface
项目摘要
Project Summary
Ionizing radiation (IR) is a critical component of modern medicine. When IR penetrates through the organism, it
could depart its energy to the medium mainly through ionization and excitation. The energy departure of IR is
medium composition dependent, and hence it is used to ‘see’ the inner structure of the human beings, enabling
the application of IR in the medical imaging of mammography, chest x-rays, computational tomography, positron
emission tomography, etc. IR can also damage the structure and/or affect the function of the organism and hence
it is applied to treat cancer in the form of radiosurgery and radiotherapy. Meanwhile, IR is found to be genotoxic
and carcinogenic, calling the non-ending effort to understand the fundamental effects.
Advanced cellular radiobiological study exhibited that the damage of deoxyribonucleic acid (DNA) plays a pivotal
role towards the determination of the final biological or even clinical outcome after exposure to IR. It is
hypothesized that when IR interacts with DNA, it could damage DNA in picoseconds by the primary and
secondary IR particles and in microseconds by subsequently generated radiation radicals. It is then essential to
understand how IR produces this initial damage under various radiation conditions. Microscopic Monte Carlo
(MC) simulation such as Geant4-DNA, capable of computing this damaging process, has been playing an
important role in the quantitative hypothesis-test. However, there are several issues in the state-of-the-art MC
tools, making it hard to meet the increasing demanding for advanced applications. These include the low
efficiency in dealing with the ‘many-body’ problem, the relatively large uncertainty in the final computing results,
the lack of support for the entire cell cycle and the limited-access/user-unfriendly designs, etc.
In this project, we propose to solve the above issues by developing a next-generation MC simulation tool for IR
induced DNA damage computation through the novel implementations of graphical processing units (GPUs)
parallel computing, the molecular dynamics/first principles based computation, the new DNA model development
based on the extrusion model and polymer physics, and the open-source release with user-friendly interface.
Upon success, the developed system is expected to serve as a next-generation simulation platform for the
calculation of the initial DNA damage caused by IR, which can become a profound first-step towards a successful
accomplishment of the “bottom-up” multi-scale modeling for the entire radiobiological process, making a
significant impact in radiation medicine.
项目概要
电离辐射(IR)是现代医学的重要组成部分。当红外线穿透生物体时,
主要通过电离和激发将其能量释放到介质中。 IR 的能量偏离为
依赖于介质成分,因此它被用来“看到”人类的内部结构,使
红外在乳房X线摄影、胸部X光、计算断层扫描、正电子等医学成像中的应用
发射断层扫描等。红外线也会损害生物体的结构和/或影响其功能,因此
它以放射外科和放射疗法的形式应用于治疗癌症。同时,IR被发现具有遗传毒性
和致癌性,需要永无休止的努力来了解其根本影响。
先进的细胞放射生物学研究表明,脱氧核糖核酸(DNA)的损伤起着关键作用
对于确定暴露于红外线后的最终生物学甚至临床结果的作用。这是
假设当 IR 与 DNA 相互作用时,它可能会在皮秒内通过初级和
二次红外粒子,并在微秒内通过随后产生的辐射自由基。那么有必要
了解红外线在各种辐射条件下如何产生这种初始损害。微观蒙特卡罗
(MC) 模拟,例如 Geant4-DNA,能够计算这种破坏过程,一直在发挥作用
在定量假设检验中发挥着重要作用。然而,最先进的MC存在几个问题
工具,使其难以满足对高级应用程序日益增长的需求。这些包括低
处理“多体”问题的效率,最终计算结果的不确定性较大,
缺乏对整个细胞周期的支持以及访问受限/用户不友好的设计等。
在这个项目中,我们建议通过开发下一代 IR MC 仿真工具来解决上述问题
通过图形处理单元 (GPU) 的新颖实现诱导 DNA 损伤计算
并行计算、基于分子动力学/第一原理的计算、新 DNA 模型开发
基于挤出模型和聚合物物理,并开源发布,具有用户友好的界面。
一旦成功,所开发的系统预计将作为下一代仿真平台
计算 IR 引起的初始 DNA 损伤,这可能成为成功迈出的重要第一步
完成了整个放射生物学过程的“自下而上”的多尺度建模,使得
在放射医学领域产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujie Chi其他文献
Yujie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 44.66万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 44.66万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 44.66万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 44.66万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 44.66万 - 项目类别:














{{item.name}}会员




