MIRA: Uncover Design Rules for Interaction and Assembly of Nature's Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
基本信息
- 批准号:10205773
- 负责人:
- 金额:$ 9.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2,4-DinitrophenolAffinityBindingBinding SitesBiologicalCharacteristicsChemistryCodeDetectionDiseaseElectron Spin Resonance SpectroscopyFundingGoalsHydration statusIntegral Membrane ProteinKnowledgeLearningMeasurementMembrane ProteinsMethodsModelingModificationMolecularMolecular ConformationMolecular MachinesMutationNatureNuclearNuclear Magnetic ResonancePhasePhysiologic pulsePhysiologicalPoint MutationPropertyProtein ConformationProtein DynamicsProtein EngineeringProteinsResolutionSiteSolubilitySpectrum AnalysisStructureStructure-Activity RelationshipSurfaceTranslatingTranslationsVisionWateraggregation pathwaybiochemical toolsdesignglobular proteinnovel strategiesparent grantprotein structuresolid state nuclear magnetic resonancetau Proteinstool
项目摘要
Project Summary/Abstract:
The emergence of unprecedented high-resolution structures of biological building blocks is revolutionizing the
way we can rationalize the protein machinery, yet the structure only offers a necessary, but insufficient, starting
point to uncover protein property, activity and function. There is a fundamental knowledge gap in understanding
the translation of protein structure and surface chemistry into protein property and function. Even a property as
widely studied as protein solubility cannot be a priori predicted from a known protein structure with our current
tools and knowledge, as underscored by the observation that many single mutations invoke minimal structural
changes while dramatically changing the stability, property and aggregability. Our vision is to uncover the code
for translating protein surface structural properties into protein surface activity, interaction and function. The Han
lab is working on achieving such translation, among others, aided by advanced spectroscopy methods that probe
local protein dynamics, site-specific hydration properties and conformational ensembles. These measurements
are enabled by existing state-of-the-art tools, such as electron paramagnetic resonance (EPR) lineshape
analysis, pulsed dipolar EPR and solid-state nuclear magnetic resonance (NMR), as well as novel approaches
developed by the Han lab, such as Overhauser dynamic nuclear polarization (ODNP) and other DNP-amplified
NMR methods. The combination of these methods will enable the detection of protein surface hydration, topology
and interaction, in dilute solution state under physiological conditions and with enhanced sensitivity. The Han lab
will systematically apply and refine the tools and methods to study protein stability, interaction, phase separation,
oligomerization to aggregation. The five-year goals focus on the following select classes of proteins. We choose
the globular protein LOV as a model to uncover the structure-function relationship to aid in rational protein
engineering leading to properties such as enhanced binding affinity, allostery, fluorescent property and controlled
conformational plasticity. We choose the protein tau to study an intrinsically disordered protein (IDP) for which
single-point mutations and subtle partner interactions significantly tune its stability and aggregation propensity
in disease contexts. Our goal will be to reveal the mechanisms, e.g. by hydration perturbation or conformational
ensemble shifts, through which mutations and other modifications modulate aggregation propensity. Finally, we
aim to uncover the structural and mechanistic basis, as well as functional consequences, of oligomerization of
two trans-membrane proteins, PR and A2A. The long-term goal of this proposal is to decipher the design rules
for interactions and active surfaces of proteins, so that from the protein surface structure and topology one can
predict where the binding site is, or learn how to design one that rationally modulates protein-protein assembly,
and select or design specific aggregation pathways.
项目总结/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Songi Han其他文献
Songi Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Songi Han', 18)}}的其他基金
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10406266 - 财政年份:2020
- 资助金额:
$ 9.41万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10651833 - 财政年份:2020
- 资助金额:
$ 9.41万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10403510 - 财政年份:2020
- 资助金额:
$ 9.41万 - 项目类别:
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10170389 - 财政年份:2020
- 资助金额:
$ 9.41万 - 项目类别:
Multifrequency microwave powered DNP instrument for MAS NMR
用于 MAS NMR 的多频微波供电 DNP 仪器
- 批准号:
9166814 - 财政年份:2016
- 资助金额:
$ 9.41万 - 项目类别:
The Role of Lipid Membrane and Hydration on the Oligomerization and Function of PR and A2A
脂膜和水合对 PR 和 A2A 寡聚化和功能的作用
- 批准号:
9276861 - 财政年份:2015
- 资助金额:
$ 9.41万 - 项目类别:
Role of lipid membrane and hydration on the oligomerization and function of PR and A2A
脂膜和水合对 PR 和 A2A 寡聚化和功能的作用
- 批准号:
8966154 - 财政年份:2015
- 资助金额:
$ 9.41万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 9.41万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 9.41万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 9.41万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 9.41万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 9.41万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 9.41万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 9.41万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 9.41万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 9.41万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 9.41万 - 项目类别:
Studentship